Recently, multi-stable origami structures and material systems have shown promising potentials to achieve multi-functionality. Especially, origami folding is fundamentally a three-dimensional mechanism, which imparts unique capabilities not seen in the more traditional multi-stable systems. This paper proposes and analytically examines a multi-stable origami cellular structure that can exhibit asymmetric energy barriers and a mechanical diode behavior in compression. Such a structure consists of many stacked Miura-ori sheets of different folding stiffness and accordion-shaped connecting sheets, and it can be divided into unit cells that features two different stable equilibria. To understand the desired diode behavior, this study focuses on two adjacent unit cells and examines how folding can create a kinematic constraint onto the deformation of these two cells. Via estimating the elastic potential energy landscape of this dual cell system. we find that the folding-induced kinematic constraint can significantly increase the potential energy barrier for compressing the dual-cell structure from a certain stable state to another, however, the same constraint would not increase the energy barrier of the opposite extension switch. As a result, one needs to apply a large force to compress the origami cellular structure but only a small force to stretch it, hence a mechanical diode behavior. Results of this study can open new possibilities for achieving structural motion rectifying, wave propagation control, and embedded mechanical computation. 
                        more » 
                        « less   
                    
                            
                            Totimorphic assemblies from neutrally stable units
                        
                    
    
            Inspired by the quest for shape-shifting structures in a range of applications, we show how to create morphable structural materials using a neutrally stable unit cell as a building block. This unit cell is a self-stressed hinged structure with a one-parameter family of morphing motions that are all energetically equivalent. However, unlike kinematic mechanisms, the unit cell is not infinitely floppy and instead exhibits a tunable mechanical response akin to that of an ideal rigid-plastic material. Theory and simulations allow us to explore the properties of planar and spatial assemblies of neutrally stable elements, and solve the inverse problem of designing assemblies that can morph from one given shape into another. Simple experimental prototypes of these assemblies corroborate our theoretical results and show that the addition of switchable hinges allows us to create load-bearing structures. Altogether, totimorphs pave the way for structural materials whose geometry and deformation response can be controlled independently and at multiple scales. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2011754
- PAR ID:
- 10307055
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 42
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. e2107003118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Deployability, multifunctionality, and tunability are features that can be explored in the design space of origami engineering solutions. These features arise from the shape-changing capabilities of origami assemblies, which require effective actuation for full functionality. Current actuation strategies rely on either slow or tethered or bulky actuators (or a combination). To broaden applications of origami designs, we introduce an origami system with magnetic control. We couple the geometrical and mechanical properties of the bistable Kresling pattern with a magnetically responsive material to achieve untethered and local/distributed actuation with controllable speed, which can be as fast as a tenth of a second with instantaneous shape locking. We show how this strategy facilitates multimodal actuation of the multicell assemblies, in which any unit cell can be independently folded and deployed, allowing for on-the-fly programmability. In addition, we demonstrate how the Kresling assembly can serve as a basis for tunable physical properties and for digital computing. The magnetic origami systems are applicable to origami-inspired robots, morphing structures and devices, metamaterials, and multifunctional devices with multiphysics responses.more » « less
- 
            null (Ed.)Crystals composed of photoreactive molecules represent a new class of photomechanical materials with the potential to generate large forces on fast timescales. An example is the photodimerization of 9- tert -butyl-anthracene ester ( 9TBAE ) in molecular crystal nanorods that leads to an average elongation of 8%. Previous work showed that this expansion results from the formation of a metastable crystalline product. In this article, it is shown how a novel combination of ensemble oriented-crystal solid-state NMR, X-ray diffraction, and first principles computational modeling can be used to establish the absolute unit cell orientations relative to the shape change, revealing the atomic-resolution mechanism for the photomechanical response and enabling the construction of a model that predicts an elongation of 7.4%, in good agreement with the experimental value. According to this model, the nanorod expansion does not result from an overall change in the volume of the unit cell, but rather from an anisotropic rearrangement of the molecular contents. The ability to understand quantitatively how molecular-level photochemistry generates mechanical displacements allows us to predict that the expansion could be tuned from +9% to −9.5% by controlling the initial orientation of the unit cell with respect to the nanorod axis. This application of NMR-assisted crystallography provides a new tool capable of tying the atomic-level structural rearrangement of the reacting molecular species to the mechanical response of a nanostructured sample.more » « less
- 
            Multi-stable structures have gathered extensive interest because they can provide a broad spectrum of adaptive functions for many engineering systems. Especially, origami sheets with a translational periodicity can be stacked and assembled to form a multi-stable cellular solid, which has emerged as a promising platform to design functional structures. This paper investigates the multi-stability characteristics of a non-rigid stacked Miura-origami mechanism consisting of Miura-ori sheets and accordion-shaped connecting sheets, focusing on the elemental unit cell. A nonlinear mechanical model based on the barhinge approach is established to quantitatively study the unit cell’s multi-stability with intentionally relaxed rigid-folding conditions. Results show that only two stable states are achievable in the unit cell with enforced rigid-folding kinematics. However, if one relaxes the rigid-folding conditions and allows the facet to deform (i.e. non-rigid folding), four stable states are reachable in the unit cell if the crease torsional stiffness of the connecting sheets becomes sufficiently larger than that of the Miura-ori sheets, or the stress-free folding angle deviates away from 0°. A close examination of the potential energy composition of the non-rigid unit cell provides a detailed principle underpinning the multi-stability. By showing the benefits of exploiting facet compliance, this study can become the building blocks for origami-based structures and material systems with a wider variety of novel functionalities.more » « less
- 
            A novel methodology is introduced for designing auxetic (negative Poisson's ratio) structures based on topological principles and is demonstrated by investigating a new class of auxetics based on two‐dimensional (2D) textile weave patterns. Conventional methodology for designing auxetic materials typically involves determining a single deformable block (a unit cell) of material whose shape results in auxetic behavior. Consequently, patterning such a unit cell in a 2D (or 3D) domain results in a larger structure that exhibits overall auxetic behavior. Such an approach naturally relies on some prior intuition and experience regarding which unit cells may be auxetic. Second, tuning the properties of the resulting structures is typically limited to parametric variations of the geometry of a specific type of unit cell. Thus, most of the currently known auxetic structures belong to a selected few classes of unit cell geometries that are explicitly defined in accordance with a specified topological (i.e., grid structure). Herein, a new class of auxetic structures is demonstrated that, while periodic, can be generated implicitly, i.e., without reference to a specific unit cell design. The approach leverages weave‐based parameters (A–B–C), resulting in a rich design space for auxetics that is previously unexplored.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
