skip to main content

Title: Phylogeography of the smooth greensnake, Opheodrys vernalis (Squamata: Colubridae): divergent lineages and variable demographics in a widely distributed yet enigmatic species

Phylogeographic studies can uncover robust details about the population structure, demographics, and diversity of species. The smooth greensnake, Opheodrys vernalis, is a small, cryptic snake occupying mesic grassland and sparsely wooded habitats. Although O. vernalis has a wide geographical range, many metapopulations are patchy and some are declining. We used mitochondrial DNA and double digest restriction-site associated DNA sequencing to construct the first phylogeographic assessment of O. vernalis. Genomic analysis of 119 individuals (mitochondrial DNA) and a subset of another 45 smooth greensnakes (nuclear DNA; N = 3031 single nucleotide polymorphisms) strongly supports two longitudinally separated lineages, with admixture in the Great Lakes region. Post-Pleistocene secondary contact best explains admixture from populations advancing northwards. Overall, populations expressed low heterozygosity, variable inbreeding rates, and moderate to high differentiation. Disjunct populations in the Rocky Mountains and central Great Plains regions might be contracting relicts, whereas northerly populations in more continuous mesic habitats (e.g., Prairie Pothole region, southern Canada) had signals of population expansion. Broadly, conservation management efforts should be focused on local populations, because habitat connectivity may facilitate gene flow and genetic diversity.

; ; ; ;
Publication Date:
Journal Name:
Biological Journal of the Linnean Society
Page Range or eLocation-ID:
p. 940-957
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    For regions that were covered by ice during the Pleistocene glaciations, species must have emigrated from unglaciated regions. However, it can be difficult to discern when and from what ancestral source populations such expansions took place, especially since warming climates introduce the possibility of very recent expansions. For example, in the Great Lakes region, pronounced climatic change includes past glaciations as well as recent, rapid warming. Here we evaluate different expansion hypotheses with a genomic study of the white-footed mouse (Peromyscus leucopus noveboracensis), which is one of the most common mammals throughout the Great Lakes region. Ecological surveys coupled with historical museum records suggest a recent range expansion of P. leucopus associated with the warming climate over the last decades. These detailed records have yet to be complemented by genomic data that provide the requisite resolution for detecting recent expansion, although some mitochondrial DNA (mtDNA) sequences have suggested possible hypotheses about the geography of expansion. With more than 7,000 loci generated using RADseq, we evaluate support for multiple hypotheses of a geographic expansion in the Upper Peninsula of Michigan (UP). Analysis of a single random single-nucleotide polymorphism per locus revealed a fine-scale population structure separating the Lower Peninsula (LP)more »population from all other populations in the UP. We also detected a genetic structure that reflects an evolutionary history of postglacial colonization from two different origins into the UP, one coming from the LP and one coming from the west. Instead of supporting a climate-driven range expansion, as suggested by field surveys, our results support more ancient postglacial colonization of the UP from two different ancestral sources. With these results, we offer new insights about P. leucopus geographic expansion history, as well as a more general phylogeographic framework for testing range shifts in the Great Lakes region.

    « less
  2. Abstract

    Since the first Spanish settlers brought horses to America centuries ago, several local varieties and breeds have been established in the New World. These were generally a consequence of the admixture of the different breeds arriving from Europe. In some instances, local horses have been selectively bred for specific traits, such as appearance, endurance, strength, and gait. We looked at the genetics of two breeds, the Puerto Rican Non-Purebred (PRNPB) (also known as the “Criollo”) horses and the Puerto Rican Paso Fino (PRPF), from the Caribbean Island of Puerto Rico. While it is reasonable to assume that there was a historic connection between the two, the genetic link between them has never been established. In our study, we started by looking at the genetic ancestry and diversity of current Puerto Rican horse populations using a 668 bp fragment of the mitochondrial DNA D-loop (HVR1) in 200 horses from 27 locations on the island. We then genotyped all 200 horses in our sample for the “gait-keeper”DMRT3mutant allele previously associated with the paso gait especially cherished in this island breed. We also genotyped a subset of 24 samples with the Illumina Neogen Equine Community genome-wide array (65,000 SNPs). This data was further combined with the publicly availablemore »PRPF genomes from other studies. Our analysis show an undeniable genetic connection between the two varieties in Puerto Rico, consistent with the hypothesis that PRNPB horses represent the descendants of the original genetic pool, a mix of horses imported from the Iberian Peninsula and elsewhere in Europe. Some of the original founders of PRNRB population must have carried the “gait-keeper”DMRT3allele upon arrival to the island. From this admixture, the desired traits were selected by the local people over the span of centuries. We propose that the frequency of the mutant “gait-keeper” allele originally increased in the local horses due to the selection for the smooth ride and other characters, long before the PRPF breed was established. To support this hypothesis, we demonstrate that PRNPB horses, and not the purebred PRPF, carry a signature of selection in the genomic region containing theDMRT3locus to this day. The lack of the detectable signature of selection associated with theDMRT3in the PRPF would be expected if this native breed was originally derived from the genetic pool of PRNPB horses established earlier and most of the founders already had the mutant allele. Consequently, selection specific to PRPF later focused on allels in other genes (includingCHRM5, CYP2E1, MYH7, SRSF1, PAM, PRNand others) that have not been previously associated with the prized paso gait phenotype in Puerto Rico or anywhere else.

    « less
  3. Abstract

    We explored the evolutionary radiation in the House Wren complex (Troglodytes aedon and allies), the New World’s most widely distributed passerine species. The complex has been the source of ongoing taxonomic debate. To evaluate phenotypic variation in the House Wren complex, we collected 81,182 single-nucleotide polymorphisms (SNPs) from restriction site associated loci (RADseq) and mitochondrial DNA (mtDNA) from samples representing the taxonomic and geographic diversity of the complex. Both datasets reveal deep phylogeographic structuring, with several topological discrepancies. The trees highlight the evolutionary distinctiveness of eastern and western T. aedon, which were sister taxa in the SNP tree and paraphyletic on the mtDNA tree. The RADseq data reveal a distinct T. a. brunneicollis group, although STRUCTURE plots suggest admixture between western T. aedon and northern Mexican samples of T. a. brunneicollis. MtDNA data show a paraphyletic arrangement of T. a. musculus on the tree, whereas the SNP tree portrays them as monophyletic. Island taxa are distinct in both datasets, including T. a. beani (Isla Cozumel), which appears derived from T. a. musculus in eastern Mexico, and T. sissonii (Isla Socorro) and T. tanneri (Isla Clarión) although the 2 datasets disagree on their overall phylogenetic placement. Although we had onlymore »mtDNA data for T. a. martinicensis from the Lesser Antilles, we found at least 4 distinct and paraphyletic taxa from Trinidad, Granada, St. Vincent islands, and Dominica. The House Wren complex showed strong differentiation in mtDNA and RADseq datasets, with conflicting patterns likely arising from some combination of sex-biased dispersal, incomplete lineage sorting, or selection on mtDNA. The most glaring discrepancies between these 2 datasets, such as the paraphyly of eastern and western North American House Wrens in the mtDNA tree, present excellent opportunities for follow-up studies on evolutionary mechanisms that underpin phylogeographic patterns.

    « less
  4. Powell, Roger (Ed.)
    Abstract Quaternary climatic oscillations affected species distributions worldwide, creating cycles of connectivity and isolation that impacted population demography and promoted lineage divergence. These effects have been well studied in temperate regions. Taxa inhabiting mesic montane habitats in tropical ecosystems show high levels of endemism and diversification in the distinct mountain ranges they inhabit; such a pattern has commonly been ascribed to past climatic oscillations, but few phylogeographic studies have tested this hypothesis. Here, we combine ecological niche models of species distributions with molecular data to study phylogeographic patterns in two rodents endemic to the highlands of Costa Rica and western Panama (Reithrodontomys creper and Nephelomys devius). In so doing, we apply a novel approach that incorporates a basic ecological principle: the expected positive relationship between environmental suitability and population abundance. Specifically, we use niche models to predict potential patterns of population connectivity and stability of different suitability levels during climatic extremes of the last glacial–interglacial cycle; we then test these predictions with population genetic analyses of a mitochondrial and a nuclear marker. The detailed predictions arising from the different levels of suitability were moderately to highly congruent with the molecular data depending on the species. Overall, results suggest that inmore »these tropical montane ecosystems, cycles of population connectivity and isolation followed a pattern opposite to that typically described for temperate or lowland tropical ecosystems: namely, higher connectivity during the colder glacials, with isolation in montane refugia during the interglacials, including today. Nevertheless, the individualistic patterns for each species indicate a potentially wide gamut of phylogeographic histories reflecting particularities of their niches. Taken together, this study illustrates how phylogeographic inferences may benefit from niche model outputs that provide more detailed predictions of connectivity and finer characterizations of potential refugia through time.« less
  5. Background The Malagasy Region, one of the top megadiversity regions, hosts one of the highest numbers of endemic and threatened organisms on earth. One of the most spectacular examples of ant radiation on the island has occurred in the hyperdiverse genus Pheidole . To this date, there are 135 described Madagascan Pheidole divided into 16 species-groups, and 97% of Malagasy species are endemic to the island. This study is a taxonomic revision of the Pheidole megacephala group, one of only two species-groups comprising a combination of native, endemic taxa and widely distributed introduced species. Methods The diversity of the Malagasy members of the megacephala group was assessed via application of qualitative morphological and DNA sequence data. Qualitative, external morphological characteristics ( e.g., head shape, gaster sculpture, body colouration) were evaluated in order to create a priori grouping hypotheses, and confirm and improve species delimitation. Mitochondrial DNA sequences from cytochrome oxidase I (COI) gene fragments were analyzed to test the putative species previously delimited by morphological analyses. Results We recognize three species belonging to the megacephala group: P. megacephala (Fabricius, 1793), P. megatron Fischer & Fisher, 2013 and P. spinosa Forel, 1891 stat. nov. Pheidole spinosa is redescribed and elevated tomore »the species level. The following names are recognized as junior synonyms of P. spinosa : P. megacephala scabrior Forel, 1891 syn. nov. , P. picata Forel, 1891 syn. nov. , P. picata gietleni Forel, 1905 syn. nov. , P. picata bernhardae Emery, 1915 syn. nov. , and P. decepticon Fischer & Fisher, 2013 syn. nov. The results are supplemented with an identification key to species for major workers of the megacephala group, high-resolution images for major and minor workers, and comments on the distribution and biology of all Malagasy members of the group. Our study revealed that Pheidole megacephala , a species listed among the 100 worst invasive species worldwide, occurs in both natural and disturbed sites in the Malagasy region. The two remaining members of the megacephala group, most likely endemic to this region, are also present in anthropogenic habitats and often co-occur with P. megacephala . It appears that the Malagasy members of the group are generalists and dominant in anthropogenic habitats. Additionally, we documented the presence of supermajors in colonies of P. spinosa —a phenomenon previously not known for this group.« less