skip to main content

Title: Widespread attenuating changes in brain connectivity associated with the general factor of psychopathology in 9- and 10-year olds

Convergent research identifies a general factor (“P factor”) that confers transdiagnostic risk for psychopathology. Large-scale networks are key organizational units of the human brain. However, studies of altered network connectivity patterns associated with the P factor are limited, especially in early adolescence when most mental disorders are first emerging. We studied 11,875 9- and 10-year olds from the Adolescent Brain and Cognitive Development (ABCD) study, of whom 6593 had high-quality resting-state scans. Network contingency analysis was used to identify altered interconnections associated with the P factor among 16 large-scale networks. These connectivity changes were then further characterized with quadrant analysis that quantified the directionality of P factor effects in relation to neurotypical patterns of positive versus negative connectivity across connections. The results showed that the P factor was associated with altered connectivity across 28 network cells (i.e., sets of connections linking pairs of networks);pPERMUTATIONvalues < 0.05 FDR-corrected for multiple comparisons. Higher P factor scores were associated with hypoconnectivity within default network and hyperconnectivity between default network and multiple control networks. Among connections within these 28 significant cells, the P factor was predominantly associated with “attenuating” effects (67%;pPERMUTATION < 0.0002), i.e., reduced connectivity at neurotypically positive connections and increased connectivity at neurotypically negative connections. more » These results demonstrate that the general factor of psychopathology produces attenuating changes across multiple networks including default network, involved in spontaneous responses, and control networks involved in cognitive control. Moreover, they clarify mechanisms of transdiagnostic risk for psychopathology and invite further research into developmental causes of distributed attenuated connectivity.

« less
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Translational Psychiatry
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Irritable bowel syndrome (IBS) is a common disorder of brain-gut interactions characterized by chronic abdominal pain, altered bowel movements, often accompanied by somatic and psychiatric comorbidities. We aimed to test the hypothesis that a baseline phenotype composed of multi-modal neuroimaging and clinical features predicts clinical improvement on the IBS Symptom Severity Scale (IBS-SSS) at 3 and 12 months without any targeted intervention. Female participants (N = 60) were identified as “improvers” (50-point decrease on IBS-SSS from baseline) or “non-improvers.” Data integration analysis using latent components (DIABLO) was applied to a training and test dataset to determine whether a limited number of sets of multiple correlated baseline’omics data types, including brain morphometry, anatomical connectivity, resting-state functional connectivity, and clinical features could accurately predict improver status. The derived predictive models predicted improvement status at 3-months and 12-months with 91% and 83% accuracy, respectively. Across both time points, non-improvers were classified as having greater correlated morphometry, anatomical connectivity and resting-state functional connectivity characteristics within salience and sensorimotor networks associated with greater pain unpleasantness, but lower default mode network integrity and connectivity. This suggests that non-improvers have a greater engagement of attentional systems to perseverate on painful visceral stimuli, predicting IBS exacerbation. The ability ofmore »baseline multimodal brain-clinical signatures to predict symptom trajectories may have implications in guiding integrative treatment in the age of precision medicine, such as treatments targeted at changing attentional systems such as mindfulness or cognitive behavioral therapy.

    « less
  2. Abstract Background There is growing evidence indicating that a number of functional connectivity networks are disrupted at each stage of the full clinical Alzheimer’s disease spectrum. Such differences are also detectable in cognitive normal (CN) carrying mutations of AD risk genes, suggesting a substantial relationship between genetics and AD-altered functional brain networks. However, direct genetic effect on functional connectivity networks has not been measured. Methods Leveraging existing AD functional connectivity studies collected in NeuroSynth, we performed a meta-analysis to identify two sets of brain regions: ones with altered functional connectivity in resting state network and ones without. Then with the brain-wide gene expression data in the Allen Human Brain Atlas, we applied a new biclustering method to identify a set of genes with differential co-expression patterns between these two set of brain regions. Results Differential co-expression analysis using biclustering method led to a subset of 38 genes which showed distinctive co-expression patterns between AD-related and non AD-related brain regions in default mode network. More specifically, we observed 4 sub-clusters with noticeable co-expression difference, where the difference in correlations is above 0.5 on average. Conclusions This work applies a new biclustering method to search for a subset of genes with alteredmore »co-expression patterns in AD-related default mode network regions. Compared with traditional differential expression analysis, differential co-expression analysis yielded many more significant hits with extra insights into the wiring mechanism between genes. Particularly, the differential co-expression pattern was observed between two sets of genes, suggesting potential upstream genetic regulators in AD development.« less
  3. Abstract Adolescence is a period of profound but incompletely understood changes in the brain’s neural circuitry (the connectome), which is vulnerable to risk factors such as unhealthy weight, but may be protected by positive factors such as regular physical activity. In 5955 children (median age = 120 months; 50.86% females) from the Adolescent Brain Cognitive Development (ABCD) cohort, we investigated direct and indirect (through impact on body mass index [BMI]) effects of physical activity on resting-state networks, the backbone of the functional connectome that ubiquitously affects cognitive function. We estimated significant positive effects of regular physical activity on network connectivity, efficiency, robustness and stability (P ≤ 0.01), and on local topologies of attention, somatomotor, frontoparietal, limbic, and default-mode networks (P < 0.05), which support extensive processes, from memory and executive control to emotional processing. In contrast, we estimated widespread negative BMI effects in the same network properties and brain regions (P < 0.05). Additional mediation analyses suggested that physical activity could also modulate network topologies leading to better control of food intake, appetite and satiety, and ultimately lower BMI. Thus, regular physical activity may have extensive positive effects on the development of the functional connectome, and may be critical for improving the detrimental effects of unhealthy weight on cognitivemore »health.« less
  4. Variability in functional brain network connectivity has been linked to individual differences in cognitive, affective, and behavioral traits in adults. However, little is known about the developmental origins of such brain-behavior correlations. The current study examined functional brain network connectivity and its link to behavioral temperament in typically developing newborn and 1-month-old infants ( M [age] = 25 days; N = 75) using functional near-infrared spectroscopy (fNIRS). Specifically, we measured long-range connectivity between cortical regions approximating fronto-parietal, default mode, and homologous-interhemispheric networks. Our results show that connectivity in these functional brain networks varies across infants and maps onto individual differences in behavioral temperament. Specifically, connectivity in the fronto-parietal network was positively associated with regulation and orienting behaviors, whereas connectivity in the default mode network showed the opposite effect on these behaviors. Our analysis also revealed a significant positive association between the homologous-interhemispheric network and infants' negative affect. The current results suggest that variability in long-range intra-hemispheric and cross-hemispheric functional connectivity between frontal, parietal, and temporal cortex is associated with individual differences in affect and behavior. These findings shed new light on the brain origins of individual differences in early-emerging behavioral traits and thus represent a viable novel approach for investigatingmore »developmental trajectories in typical and atypical neurodevelopment.« less
  5. Abstract

    While the brain’s functional network architecture is largely conserved between resting and task states, small but significant changes in functional connectivity support complex cognition. In this study, we used a modified Raven’s Progressive Matrices Task to examine symbolic and perceptual reasoning in human participants undergoing fMRI scanning. Previously, studies have focused predominantly on discrete symbolic versions of matrix reasoning, even though the first few trials of the Raven’s Advanced Progressive Matrices task consist of continuous perceptual stimuli. Our analysis examined the activation patterns and functional reconfiguration of brain networks associated with resting state and both symbolic and perceptual reasoning. We found that frontoparietal networks, including the cognitive control and dorsal attention networks, were significantly activated during abstract reasoning. We determined that these same task-active regions exhibited flexibly-reconfigured functional connectivity when transitioning from resting state to the abstract reasoning task. Conversely, we showed that a stable network core of regions in default and somatomotor networks was maintained across both resting and task states. We propose that these regionally-specific changes in the functional connectivity of frontoparietal networks puts the brain in a “task-ready” state, facilitating efficient task-based activation.