Abstract Sleep is critical for cognitive health, especially during complex developmental periods such as adolescence. However, its effects on maturating brain networks that support cognitive function are only partially understood. We investigated the impact of shorter duration and reduced quality sleep, common stressors during development, on functional network properties in early adolescence—a period of significant neural maturation, using resting-state functional magnetic resonance imaging from 5566 children (median age = 120.0 months; 52.1% females) in the Adolescent Brain Cognitive Development cohort. Decreased sleep duration, increased sleep latency, frequent waking up at night, and sleep-disordered breathing symptoms were associated with lower topological efficiency, flexibility, and robustness of visual, sensorimotor, attention, fronto-parietal control, default-mode and/or limbic networks, and with aberrant changes in the thalamus, basal ganglia, hippocampus, and cerebellum (P < 0.05). These widespread effects, many of which were body mass index-independent, suggest that unhealthy sleep in early adolescence may impair neural information processing and integration across incompletely developed networks, potentially leading to deficits in their cognitive correlates, including attention, reward, emotion processing and regulation, memory, and executive control. Shorter sleep duration, frequent snoring, difficulty waking up, and daytime sleepiness had additional detrimental network effects in nonwhite participants, indicating racial disparities in the influence of sleep metrics.
more »
« less
Widespread Positive Direct and Indirect Effects of Regular Physical Activity on the Developing Functional Connectome in Early Adolescence
Abstract Adolescence is a period of profound but incompletely understood changes in the brain’s neural circuitry (the connectome), which is vulnerable to risk factors such as unhealthy weight, but may be protected by positive factors such as regular physical activity. In 5955 children (median age = 120 months; 50.86% females) from the Adolescent Brain Cognitive Development (ABCD) cohort, we investigated direct and indirect (through impact on body mass index [BMI]) effects of physical activity on resting-state networks, the backbone of the functional connectome that ubiquitously affects cognitive function. We estimated significant positive effects of regular physical activity on network connectivity, efficiency, robustness and stability (P ≤ 0.01), and on local topologies of attention, somatomotor, frontoparietal, limbic, and default-mode networks (P < 0.05), which support extensive processes, from memory and executive control to emotional processing. In contrast, we estimated widespread negative BMI effects in the same network properties and brain regions (P < 0.05). Additional mediation analyses suggested that physical activity could also modulate network topologies leading to better control of food intake, appetite and satiety, and ultimately lower BMI. Thus, regular physical activity may have extensive positive effects on the development of the functional connectome, and may be critical for improving the detrimental effects of unhealthy weight on cognitive health.
more »
« less
- PAR ID:
- 10228266
- Date Published:
- Journal Name:
- Cerebral Cortex
- ISSN:
- 1047-3211
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Intrinsic brain dynamics play a fundamental role in cognitive function, but their development is incompletely understood. We investigated pubertal changes in temporal fluctuations of intrinsic network topologies (focusing on the strongest connections and coordination patterns) and signals, in an early longitudinal sample from the Adolescent Brain Cognitive Development (ABCD) study, with resting-state fMRI (n = 4,099 at baseline; n = 3,376 at follow-up [median age = 10.0 (1.1) and 12.0 (1.1) years; n = 2,116 with both assessments]). Reproducible, inverse associations between low-frequency signal and topological fluctuations were estimated (p < 0.05, β = −0.20 to −0.02, 95% confidence interval (CI) = [−0.23, −0.001]). Signal (but not topological) fluctuations increased in somatomotor and prefrontal areas with pubertal stage (p < 0.03, β = 0.06–0.07, 95% CI = [0.03, 0.11]), but decreased in orbitofrontal, insular, and cingulate cortices, as well as cerebellum, hippocampus, amygdala, and thalamus (p < 0.05, β = −0.09 to −0.03, 95% CI = [−0.15, −0.001]). Higher temporal signal and topological variability in spatially distributed regions were estimated in girls. In racial/ethnic minorities, several associations between signal and topological fluctuations were in the opposite direction of those in the entire sample, suggesting potential racial differences. Our findings indicate that during puberty, intrinsic signal dynamics change significantly in developed and developing brain regions, but their strongest coordination patterns may already be sufficiently developed and remain temporally consistent.more » « less
-
Abstract Neural activity coordinated across different scales from neuronal circuits to large-scale brain networks gives rise to complex cognitive functions. Bridging the gap between micro- and macro-scale processes, we present a novel framework based on the maximum entropy model to infer a hybrid resting state structural connectome, representing functional interactions constrained by structural connectivity. We demonstrate that the structurally informed network outperforms the unconstrained model in simulating brain dynamics; wherein by constraining the inference model with the network structure we may improve the estimation of pairwise BOLD signal interactions. Further, we simulate brain network dynamics using Monte Carlo simulations with the new hybrid connectome to probe connectome-level differences in excitation-inhibition balance between apolipoprotein E (APOE)-ε4 carriers and noncarriers. Our results reveal sex differences among APOE-ε4 carriers in functional dynamics at criticality; specifically, female carriers appear to exhibit a lower tolerance to network disruptions resulting from increased excitatory interactions. In sum, the new multimodal network explored here enables analysis of brain dynamics through the integration of structure and function, providing insight into the complex interactions underlying neural activity such as the balance of excitation and inhibition.more » « less
-
Abstract The COVID-19 pandemic has had profound but incompletely understood adverse effects on youth. To elucidate the role of brain circuits in how adolescents responded to the pandemic’s stressors, we investigated their prepandemic organization as a predictor of mental/emotional health in the first ~15 months of the pandemic. We analyzed resting-state networks from n = 2,641 adolescents [median age (interquartile range) = 144.0 (13.0) months, 47.7% females] in the Adolescent Brain Cognitive Development study, and longitudinal assessments of mental health, stress, sadness, and positive affect, collected every 2 to 3 months from May 2020 to May 2021. Topological resilience and/or network strength predicted overall mental health, stress and sadness (but not positive affect), at multiple time points, but primarily in December 2020 and May 2021. Higher resilience of the salience network predicted better mental health in December 2020 (β = 0.19, 95% CI = [0.06, 0.31], P = 0.01). Lower connectivity of left salience, reward, limbic, and prefrontal cortex and its thalamic, striatal, amygdala connections, predicted higher stress (β = −0.46 to −0.20, CI = [−0.72, −0.07], P < 0.03). Lower bilateral robustness (higher fragility) and/or connectivity of these networks predicted higher sadness in December 2020 and May 2021 (β = −0.514 to −0.19, CI = [−0.81, −0.05], P < 0.04). These findings suggest that the organization of brain circuits may have played a critical role in adolescent stress and mental/emotional health during the pandemic.more » « less
-
Community detection in the human connectome: Method types, differences and their impact on inferenceAbstract Community structure is a fundamental topological characteristic of optimally organized brain networks. Currently, there is no clear standard or systematic approach for selecting the most appropriate community detection method. Furthermore, the impact of method choice on the accuracy and robustness of estimated communities (and network modularity), as well as method‐dependent relationships between network communities and cognitive and other individual measures, are not well understood. This study analyzed large datasets of real brain networks (estimated from resting‐state fMRI from = 5251 pre/early adolescents in the adolescent brain cognitive development [ABCD] study), and = 5338 synthetic networks with heterogeneous, data‐inspired topologies, with the goal to investigate and compare three classes of community detection methods: (i) modularity maximization‐based (Newman and Louvain), (ii) probabilistic (Bayesian inference within the framework of stochastic block modeling (SBM)), and (iii) geometric (based on graph Ricci flow). Extensive comparisons between methods and their individual accuracy (relative to the ground truth in synthetic networks), and reliability (when applied to multiple fMRI runs from the same brains) suggest that the underlying brain network topology plays a critical role in the accuracy, reliability and agreement of community detection methods. Consistent method (dis)similarities, and their correlations with topological properties, were estimated across fMRI runs. Based on synthetic graphs, most methods performed similarly and had comparable high accuracy only in some topological regimes, specifically those corresponding to developed connectomes with at least quasi‐optimal community organization. In contrast, in densely and/or weakly connected networks with difficult to detect communities, the methods yielded highly dissimilar results, with Bayesian inference within SBM having significantly higher accuracy compared to all others. Associations between method‐specific modularity and demographic, anthropometric, physiological and cognitive parameters showed mostly method invariance but some method dependence as well. Although method sensitivity to different levels of community structure may in part explain method‐dependent associations between modularity estimates and parameters of interest, method dependence also highlights potential issues of reliability and reproducibility. These findings suggest that a probabilistic approach, such as Bayesian inference in the framework of SBM, may provide consistently reliable estimates of community structure across network topologies. In addition, to maximize robustness of biological inferences, identified network communities and their cognitive, behavioral and other correlates should be confirmed with multiple reliable detection methods.more » « less
An official website of the United States government

