skip to main content

Title: Decreasing Phanerozoic extinction intensity as a consequence of Earth surface oxygenation and metazoan ecophysiology

The decline in background extinction rates of marine animals through geologic time is an established but unexplained feature of the Phanerozoic fossil record. There is also growing consensus that the ocean and atmosphere did not become oxygenated to near-modern levels until the mid-Paleozoic, coinciding with the onset of generally lower extinction rates. Physiological theory provides us with a possible causal link between these two observations—predicting that the synergistic impacts of oxygen and temperature on aerobic respiration would have made marine animals more vulnerable to ocean warming events during periods of limited surface oxygenation. Here, we evaluate the hypothesis that changes in surface oxygenation exerted a first-order control on extinction rates through the Phanerozoic using a combined Earth system and ecophysiological modeling approach. We find that although continental configuration, the efficiency of the biological carbon pump in the ocean, and initial climate state all impact the magnitude of modeled biodiversity loss across simulated warming events, atmospheric oxygen is the dominant predictor of extinction vulnerability, with metabolic habitat viability and global ecophysiotype extinction exhibiting inflection points around 40% of present atmospheric oxygen. Given this is the broad upper limit for estimates of early Paleozoic oxygen levels, our results are consistent with the more » relative frequency of high-magnitude extinction events (particularly those not included in the canonical big five mass extinctions) early in the Phanerozoic being a direct consequence of limited early Paleozoic oxygenation and temperature-dependent hypoxia responses.

« less
; ; ; ;
Award ID(s):
1922966 2121165
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range or eLocation-ID:
Article No. e2101900118
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Keynote points • Thermal expansion from a warming ocean and land ice melt are the main causes of the accelerating global rise in the mean sea level. • Global warming is also affecting many circulation systems. The Atlantic meridional overturning circulation has already weakened and will most likely continue to do so in the future. The impacts of ocean circulation changes include a regional rise in sea levels, changes in the nutrient distribution and carbon uptake of the ocean and feedbacks with the atmosphere, such as altering the distribution of precipitation. • More than 90 per cent of the heat from global warming is stored in the global ocean. Oceans have exhibited robust warming since the 1950s from the surface to a depth of 2,000 m. The proportion of ocean heat content has more than doubled since the 1990s compared with long-term trends. Ocean warming can be seen in most of the global ocean, with a few regions exhibiting long-term cooling. • The ocean shows a marked pattern of salinity changes in multidecadal observations, with surface and subsurface patterns providing clear evidence of a water cycle amplification over the ocean. That is manifested in enhanced salinities in the near-surface, high-salinitymore »subtropical regions and freshening in the low-salinity regions such as the West Pacific Warm Pool and the poles. • An increase in atmospheric CO2 levels, and a subsequent increase in carbon in the oceans, has changed the chemistry of the oceans to include changes to pH and aragonite saturation. A more carbon-enriched marine environment, especially when coupled with other environmental stressors, has been demonstrated through field studies and experiments to have negative impacts on a wide range of organisms, in particular those that form calcium carbonate shells, and alter biodiversity and ecosystem structure. • Decades of oxygen observations allow for robust trend analyses. Long-term measurements have shown decreases in dissolved oxygen concentrations for most ocean regions and the expansion of oxygen-depleted zones. A temperature-driven solubility decrease is responsible for most near-surface oxygen loss, though oxygen decrease is not limited to the upper ocean and is present throughout the water column in many areas. • Total sea ice extent has been declining rapidly in the Arctic, but trends are insignificant in the Antarctic. In the Arctic, the summer trends are most striking in the Pacific sector of the Arctic Ocean, while, in the Antarctic, the summer trends show increases in the Weddell Sea and decreases in the West Antarctic sector of the Southern Ocean. Variations in sea ice extent result from changes in wind and ocean currents.« less
  2. Abstract Metamorphic devolatilization of subducted slabs generates aqueous fluids that ascend into the mantle wedge, driving the partial melting that produces arc magmas. These magmas have oxygen fugacities some 10–1,000 times higher than magmas generated at mid-ocean ridges. Whether this oxidized magmatic character is imparted by slab fluids or is acquired during ascent and interaction with the surrounding mantle or crust is debated. Here we study the petrology of metasedimentary rocks from two Tertiary Aegean subduction complexes in combination with reactive transport modelling to investigate the oxidative potential of the sedimentary rocks that cover slabs. We find that the metasedimentary rocks preserve evidence for fluid-mediated redox reactions and could be highly oxidized. Furthermore, the modelling demonstrates that layers of these oxidized rocks less than about 200 m thick have the capacity to oxidize the ascending slab dehydration flux via redox reactions that remove H 2 , CH 4 and/or H 2 S from the fluids. These fluids can then oxidize the overlying mantle wedge at rates comparable to arc magma generation rates, primarily via reactions involving sulfur species. Oxidized metasedimentary rocks need not generate large amounts of fluid themselves but could instead oxidize slab dehydration fluids ascending through them. Proposed Phanerozoicmore »increases in arc magma oxygen fugacity may reflect the recycling of oxidative weathering products following Neoproterozoic–Palaeozoic marine and atmospheric oxygenation.« less
  3. The role that iron played in the oxygenation of Earth’s surface is equivocal. Iron could have consumed molecular oxygen when Fe3+-oxyhydroxides formed in the oceans, or it could have promoted atmospheric oxidation by means of pyrite burial. Through high-precision iron isotopic measurements of Archean-Paleoproterozoic sediments and laboratory grown pyrites, we show that the triple iron isotopic composition of Neoarchean-Paleoproterozoic pyrites requires both extensive marine iron oxidation and sulfide-limited pyritization. Using an isotopic fractionation model informed by these data, we constrain the relative sizes of sedimentary Fe3+-oxyhydroxide and pyrite sinks for Neoarchean marine iron. We show that pyrite burial could have resulted in molecular oxygen export exceeding local Fe2+oxidation sinks, thereby contributing to early episodes of transient oxygenation of Archean surface environments.

  4. Abstract. Temperature is a master parameter in the marine carbon cycle, exerting a critical control on the rate of biological transformation of a variety of solid and dissolved reactants and substrates. Although in the construction of numerical models of marine carbon cycling, temperature has been long recognised as a key parameter in the production and export of organic matter at the ocean surface, its role in the ocean interior is much less frequently accounted for. There, bacteria (primarily) transform sinking particulate organic matter (POM) into its dissolved constituents and consume dissolved oxygen (and/or other electron acceptors such as sulfate). The nutrients and carbon thereby released then become available for transport back to the surface, influencing biological productivity and atmospheric pCO2, respectively. Given the substantial changes in ocean temperature occurring in the past, as well as in light of current anthropogenic warming, appropriately accounting for the role of temperature in marine carbon cycling may be critical to correctly projecting changes in ocean deoxygenation and the strength of feedbacks on atmosphericpCO2. Here we extend and calibrate a temperature-dependent representation ofmarine carbon cycling in the cGENIE.muffin Earth system model, intended forboth past and future climate applications. In this, we combine atemperature-dependent remineralisation schememore »for sinking organic matterwith a biological export production scheme that also includes a dependenceon ambient seawater temperature. Via a parameter ensemble, we jointlycalibrate the two parameterisations by statistically contrasting model-projected fields of nutrients, oxygen, and the stable carbon isotopicsignature (δ13C) of dissolved inorganic carbon in the oceanwith modern observations. We additionally explore the role of temperature inthe creation and recycling of dissolved organic matter (DOM) and hence itsimpact on global carbon cycle dynamics. We find that for the present day, the temperature-dependent version showsa fit to the data that is as good as or better than the existing tuned non-temperature-dependent version of the cGENIE.muffin. The main impact ofaccounting for temperature-dependent remineralisation of POM is in drivinghigher rates of remineralisation in warmer waters, in turn driving a morerapid return of nutrients to the surface and thereby stimulating organicmatter production. As a result, more POM is exported below 80 m but onaverage reaches shallower depths in middle- and low-latitude warmer waterscompared to the standard model. Conversely, at higher latitudes, colderwater temperature reduces the rate of nutrient resupply to the surface andPOM reaches greater depth on average as a result of slower subsurface ratesof remineralisation. Further adding temperature-dependent DOM processeschanges this overall picture only a little, with a slight weakening ofexport production at higher latitudes. As an illustrative application of the new model configuration andcalibration, we take the example of historical warming and briefly assessthe implications for global carbon cycling of accounting for a more completeset of temperature-dependent processes in the ocean. We find that betweenthe pre-industrial era (ca. 1700) and the present (year 2010), in response to asimulated air temperature increase of 0.9 ∘C and an associatedprojected mean ocean warming of 0.12 ∘C (0.6 ∘C insurface waters and 0.02 ∘C in deep waters), a reduction inparticulate organic carbon (POC) export at 80 m of just 0.3 % occurs (or 0.7 % including a temperature-dependent DOM response). However, due to this increased recycling nearer the surface, the efficiency of the transfer of carbon away from the surface (at 80 m) to the deep ocean (at 1040 m) is reduced by 5 %. In contrast, with no assumed temperature-dependent processes impacting production or remineralisation of either POM or DOM, global POC export at 80 m falls by 2.9 % between the pre-industrial era and the present day as a consequence of ocean stratification and reduced nutrient resupply to the surface. Our analysis suggests that increased temperature-dependent nutrient recycling in the upper ocean has offset much of the stratification-induced restriction in its physical transport.« less
  5. Rising oceanic and atmospheric oxygen levels through time have been crucial to enhanced habitability of surface Earth environments. Few redox proxies can track secular variations in dissolved oxygen concentrations ([O2]) around threshold levels for metazoan survival in the upper ocean. We present an extensive compilation of iodine to calcium ratios (I/Ca) in marine carbonates. Our record supports a major rise in atmospheric pO2 at ~400 million years ago (Ma), and reveals a step-change in the oxygenation of the upper ocean to relatively sustainable near-modern conditions at ~200 Ma. An Earth system model demonstrates that a shift in organic matter remineralization to greater depths, which may have been due to increasing size and biomineralization of eukaryotic plankton, likely drove the I/Ca signals at ~200 Ma