skip to main content


Title: Breathless through Time: Oxygen and Animals across Earth’s History
Oxygen levels in the atmosphere and ocean have changed dramatically over Earth history, with major impacts on marine life. Because the early part of Earth’s history lacked both atmospheric oxygen and animals, a persistent co-evolutionary narrative has developed linking oxygen change with changes in animal diversity. Although it was long believed that oxygen rose to essentially modern levels around the Cambrian period, a more muted increase is now believed likely. Thus, if oxygen increase facilitated the Cambrian explosion, it did so by crossing critical ecological thresholds at low O2. Atmospheric oxygen likely remained at low or moderate levels through the early Paleozoic era, and this likely contributed to high metazoan extinction rates until oxygen finally rose to modern levels in the later Paleozoic. After this point, ocean deoxygenation (and marine mass extinctions) is increasingly linked to large igneous province eruptions—massive volcanic carbon inputs to the Earth system that caused global warming, ocean acidification, and oxygen loss. Although the timescales of these ancient events limit their utility as exact analogs for modern anthropogenic global change, the clear message from the geologic record is that large and rapid CO2 injections into the Earth system consistently cause the same deadly trio of stressors that are observed today. The next frontier in understanding the impact of oxygen changes (or, more broadly, temperature-dependent hypoxia) in deep time requires approaches from ecophysiology that will help conservation biologists better calibrate the response of the biosphere at large taxonomic, spatial, and temporal scales.  more » « less
Award ID(s):
1922966
NSF-PAR ID:
10474289
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
University of Chicago Press
Date Published:
Journal Name:
The Biological Bulletin
Volume:
243
Issue:
2
ISSN:
0006-3185
Page Range / eLocation ID:
184 to 206
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The decline in background extinction rates of marine animals through geologic time is an established but unexplained feature of the Phanerozoic fossil record. There is also growing consensus that the ocean and atmosphere did not become oxygenated to near-modern levels until the mid-Paleozoic, coinciding with the onset of generally lower extinction rates. Physiological theory provides us with a possible causal link between these two observations—predicting that the synergistic impacts of oxygen and temperature on aerobic respiration would have made marine animals more vulnerable to ocean warming events during periods of limited surface oxygenation. Here, we evaluate the hypothesis that changes in surface oxygenation exerted a first-order control on extinction rates through the Phanerozoic using a combined Earth system and ecophysiological modeling approach. We find that although continental configuration, the efficiency of the biological carbon pump in the ocean, and initial climate state all impact the magnitude of modeled biodiversity loss across simulated warming events, atmospheric oxygen is the dominant predictor of extinction vulnerability, with metabolic habitat viability and global ecophysiotype extinction exhibiting inflection points around 40% of present atmospheric oxygen. Given this is the broad upper limit for estimates of early Paleozoic oxygen levels, our results are consistent with the relative frequency of high-magnitude extinction events (particularly those not included in the canonical big five mass extinctions) early in the Phanerozoic being a direct consequence of limited early Paleozoic oxygenation and temperature-dependent hypoxia responses.

     
    more » « less
  2. Abstract

    The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this ‘biological pump’ have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quantified, preventing any detailed exploration of how changes in the biological pump over geological time may have shaped long‐term shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure. Here, we use a 3‐dimensional Earth system model of intermediate complexity to quantitatively explore the effects of the biological pump on marine chemistry. We find that when respiration of sinking organic matter is efficient, due to slower sinking or higher respiration rates, anoxia tends to be more prevalent and to occur in shallower waters. Consequently, the Phanerozoic trend toward less bottom‐water anoxia in continental shelf settings can potentially be explained by a change in the spatial dynamics of nutrient cycling rather than by any change in the ocean phosphate inventory. The model results further suggest that the Phanerozoic decline in the prevalence ocean anoxia is, in part, a consequence of the evolution of larger phytoplankton, many of which produce mineralized tests. We hypothesize that the Phanerozoic trend toward greater animal abundance and metabolic demand was driven more by increased oxygen concentrations in shelf environments than by greater food (nutrient) availability. In fact, a lower‐than‐modern ocean phosphate inventory in our closed system model is unable to account for the Paleozoic prevalence of bottom‐water anoxia. Overall, these model simulations suggest that the changing spatial distribution of photosynthesis and respiration in the oceans has exerted a first‐order control on Earth system evolution across Phanerozoic time.

     
    more » « less
  3. Uplift and amalgamation of the high-elevation (>3000 m) Tian Shan and Pamir ranges in Central Asia restricts westerly atmospheric flow and thereby limits moisture delivery to the leeward Taklimakan Desert in the Tarim Basin (<1500 m), the second largest modern sand dune desert on Earth. Although some research suggests that the hyper-arid conditions observed today in the Tarim Basin developed by ca. 25 Ma, stratigraphic evidence suggests the first erg system did not appear until 12.2 Ma. To address this controversy and to understand the tectonic influences on climate in Central Asia, we studied a continuous, 3800-m-thick stratigraphic section deposited from 15.1 to 0.9 Ma now exposed within the western Kepintagh fold-and-thrust belt in the southern Tian Shan foreland. We present new detrital zircon data (n = 839), new carbonate oxygen (δ18Oc) and carbon (δ13Cc) stable isotope compositions (n = 368), structural modeling, and stratigraphic observations, and combine these data with recently published magnetostratigraphy and regional studies to reconstruct the history of deposition, deformation, and climate change in the northwestern Tarim Basin. We find that basins along the southern (this study) and northern (i.e., Ili Basin) margins of the Tian Shan were likely receiving similar westerly precipitation by 15 Ma (δ18Oc = ∼−8‰) and had similar lacustrine-playa environments at ca. 13.5 Ma, despite differences in sedimentary provenance. At ca. 12 Ma, an erg desert formed adjacent to the southern Tian Shan in the northwestern Tarim Basin, coincident with a mid- to late Miocene phase of deformation and exhumation within both the Pamir and southern Tian Shan. Desertification at ca. 12 Ma was marked by a negative δ18Oc excursion from −7.8 ± 0.4‰ to −8.7 ± 0.7‰ in the southern Tian Shan foreland (this study), coeval with a negative δ18Oc excursion (∼−11 to −13‰) in the Tajik Basin, west of the Pamir. These data suggest that only after ca. 12 Ma did the Pamir-Tian Shan create a high-elevation barrier that effectively blocked westerly moisture, forming a rain shadow in the northwestern Tarim Basin. After 7 Ma, the southern Tian Shan foreland migrated southward as this region experienced widespread deformation. In our study area, rapid shortening and deformation above two frontal foreland faults initiated between 6.0 and 3.5 Ma resulted in positive δ13Cc excursions to values close to 0‰, which is interpreted to reflect exhumation in the Tian Shan and recycling of Paleozoic carbonates. Shortening led to isolation of the study site as a piggy-back basin by 3.5 Ma, when the sediment provenance was limited to the exhumed Paleozoic basement rocks of the Kepintagh fold belt. The abrupt sedimentologic and isotopic changes observed in the southern Tian Shan foreland appear to be decoupled from late Cenozoic global climate change and can be explained entirely by local tectonics. This study highlights how tectonics may overprint the more regional and global climate signals in active tectonic settings. 
    more » « less
  4. The evolution of oxygen cycles on Earth’s surface has been regulated by the balance between molecular oxygen production and consumption. The Neoproterozoic–Paleozoic transition likely marks the second rise in atmospheric and oceanic oxygen levels, widely attributed to enhanced burial of organic carbon. However, it remains disputed how marine organic carbon production and burial respond to global environmental changes and whether these feedbacks trigger global oxygenation during this interval. Here, we report a large lithium isotopic and elemental dataset from marine mudstones spanning the upper Neoproterozoic to middle Cambrian [~660 million years ago (Ma) to 500 Ma]. These data indicate a dramatic increase in continental clay formation after ~525 Ma, likely linked to secular changes in global climate and compositions of the continental crust. Using a global biogeochemical model, we suggest that intensified continental weathering and clay delivery to the oceans could have notably increased the burial efficiency of organic carbon and facilitated greater oxygen accumulation in the earliest Paleozoic oceans. 
    more » « less
  5. Abstract

    Non‐calcified marine macroalgae (“seaweeds”) play a variety of key roles in the modern Earth system, and it is likely that they were also important players in the geological past, particularly during critical transitions such as the Cambrian Explosion (CE) and the Great Ordovician Biodiversification Event (GOBE). To investigate the morphology and ecology of seaweeds spanning the time frame from theCEthrough theGOBE, a carefully vetted database was constructed that includes taxonomic and morphometric information for non‐calcified macroalgae from 69 fossil deposits. Analysis of the database shows a pattern of seaweed history that can be explained in terms of two floras: the Cambrian Flora and the Ordovician Flora. The Cambrian Flora was dominated by rather simple morphogroups, whereas the Ordovician Flora, which replaced the Cambrian Flora in the Ordovician and extended through the Silurian, mainly comprised comparatively complex morphogroups. In addition to morphogroup representation, the two floras show marked differences in taxonomic composition, morphospace occupation, functional‐form group representation, and life habit, thereby pointing to significant morphological and ecological changes for seaweeds roughly concomitant with theGOBEand the transition from the Cambrian to Paleozoic Evolutionary Faunas. Macroalgal changes of a similar nature and magnitude, however, are not evident in concert with theCE, as the Cambrian Flora consists largely of forms established during the Ediacaran. The cause of such a lag in macroalgal morphological diversification remains unclear, but an intriguing possibility is that it signals a previously unknown difference between theCEandGOBEwith regard to the introduction of novel grazing pressures. The consequences of the establishment of the Ordovician Flora for shallow marine ecosystems and Earth system dynamics remain to be explored in detail but could have been multifaceted and potentially include impacts on the global carbon cycle.

     
    more » « less