Reducible oxides are widely used catalyst supports that can increase oxidation reaction rates by transferring lattice oxygen at the metal-support interface. There are many outstanding questions regarding the atomic-scale dynamic meta-stability (i.e., fluxional behavior) of the interface during catalysis. Here, we employ aberration-corrected
- Award ID(s):
- 1604971
- Publication Date:
- NSF-PAR ID:
- 10307505
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract In this work, we employ density functional theory simulations to investigate possible spin polarization of CeO 2 -(111) surface and its impact on the interactions between a ceria support and Pt nanoparticles. With a Gaussian type orbital basis, our simulations suggest that the CeO 2 -(111) surface exhibits a robust surface spin polarization due to the internal charge transfer between atomic Ce and O layers. In turn, it can lower the surface oxygen vacancy formation energy and enhance the oxide reducibility. We show that the inclusion of spin polarization can significantly reduce the major activation barrier in the proposed reaction pathway of CO oxidation on ceria-supported Pt nanoparticles. For metal-support interactions, surface spin polarization enhances the bonding between Pt nanoparticles and ceria surface oxygen, while CO adsorption on Pt nanoparticles weakens the interfacial interaction regardless of spin polarization. However, the stable surface spin polarization can only be found in the simulations based on the Gaussian type orbital basis. Given the potential importance in the design of future high-performance catalysts, our present study suggests a pressing need to examine the surface ferromagnetism of transition metal oxides in both experiment and theory.
-
Abstract Constructing single atom catalysts with fine-tuned coordination environments can be a promising strategy to achieve satisfactory catalytic performance. Herein, via a simple calcination temperature-control strategy, CeO2supported Pt single atom catalysts with precisely controlled coordination environments are successfully fabricated. The joint experimental and theoretical analysis reveals that the Pt single atoms on Pt1/CeO2prepared at 550 °C (Pt/CeO2-550) are mainly located at the edge sites of CeO2with a Pt–O coordination number of
ca . 5, while those prepared at 800 °C (Pt/CeO2-800) are predominantly located at distorted Ce substitution sites on CeO2terrace with a Pt–O coordination number ofca . 4. Pt/CeO2-550 and Pt/CeO2-800 with different Pt1-CeO2coordination environments exhibit a reversal of activity trend in CO oxidation and NH3oxidation due to their different privileges in reactants activation and H2O desorption, suggesting that the catalytic performance of Pt single atom catalysts in different target reactions can be maximized by optimizing their local coordination structures. -
Abstract Ionic liquids (ILs) have shown to be promising additives to the catalyst layer to enhance oxygen reduction reaction in polymer electrolyte fuel cells. However, fundamental understanding of their role in complex catalyst layers in practically relevant membrane electrode assembly environment is needed for rational design of highly durable and active platinum-based catalysts. Here we explore three imidazolium-derived ionic liquids, selected for their high proton conductivity and oxygen solubility, and incorporate them into high surface area carbon black support. Further, we establish a correlation between the physical properties and electrochemical performance of the ionic liquid-modified catalysts by providing direct evidence of ionic liquids role in altering hydrophilic/hydrophobic interactions within the catalyst layer interface. The resulting catalyst with optimized interface design achieved a high mass activity of 347 A g−1Ptat 0.9 V under H2/O2, power density of 0.909 W cm−2under H2/air and 1.5 bar, and had only 0.11 V potential decrease at 0.8 A cm−2after 30 k accelerated stress test cycles. This performance stems from substantial enhancement in Pt utilization, which is buried inside the mesopores and is now accessible due to ILs addition.
-
Abstract Gold (Au)- and ceria (CeO2)-based catalysts are amongst the most active catalysts for the gas phase CO oxidation reaction. Nevertheless, nanosized Au and CeO2catalysts may encounter heat-induced sintering in thermochemical catalytic reactions. Herein, we report on the rational one-pot synthesis of ceria-reduced graphene oxide (CeO2-RGO) using a facile ethylenediamine (EDA)-assisted solvothermal method. Standalone RGO and free-standing CeO2were also prepared using the same EDA-assisted method for comparison. We then incorporated Au into the prepared samples by colloidal reduction and evaluated the catalytic activity of the different catalysts for CO oxidation. The RGO-supported CeO2surpassed the free-standing CeO2, exhibiting a 100% CO conversion at 285oC compared to 340oC in the case of CeO2. Interestingly, the RGO-supported Au/CeO2catalysts outperformed the Au/CeO2catalysts and achieved a 100% CO conversion at 76oC compared to 113oC in the case of Au/CeO2. Additionally, the Au/CeO2-RGO catalyst demonstrated remarkable room-temperature activity with simultaneous 72% CO conversion. This outstanding performance was attributed to the unique dispersion and size characteristics of the RGO-supported CeO2and Au catalysts in the ternary Au/CeO2-RGO nanocomposite, as revealed by TEM and XPS, among other techniques.
-
Abstract The need for active and stable oxidation catalysts is driven by the demands in production of valuable chemicals, remediation of hydrocarbon pollutants and energy sustainability. Traditional approaches focus on oxygen-activating oxides as support which provides the oxygen activation at the catalyst-support peripheral interface. Here we report a new approach to oxidation catalysts for total oxidation of hydrocarbons (e.g., propane) by surface oxygenation of platinum (Pt)-alloyed multicomponent nanoparticles (e.g., platinum-nickel cobalt (Pt–NiCo)). The in-situ/operando time-resolved studies, including high-energy synchrotron X-ray diffraction and diffuse reflectance infrared Fourier transform spectroscopy, demonstrate the formation of oxygenated Pt–NiOCoO surface layer and disordered ternary alloy core. The results reveal largely-irregular oscillatory kinetics associated with the dynamic lattice expansion/shrinking, ordering/disordering, and formation of surface-oxygenated sites and intermediates. The catalytic synergy is responsible for reduction of the oxidation temperature by ~100 °C and the high stability under 800 °C hydrothermal aging in comparison with Pt, and may represent a paradigm shift in the design of self-supported catalysts.