skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vectorial channeling as a mechanism for translational control by functional prions and condensates
Translation of messenger RNA (mRNA) is regulated through a diverse set of RNA-binding proteins. A significant fraction of RNA-binding proteins contains prion-like domains which form functional prions. This raises the question of how prions can play a role in translational control. Local control of translation in dendritic spines by prions has been invoked in the mechanism of synaptic plasticity and memory. We show how channeling through diffusion and processive translation cooperate in highly ordered mRNA/prion aggregates as well as in less ordered mRNA/protein condensates depending on their substructure. We show that the direction of translational control, whether it is repressive or activating, depends on the polarity of the mRNA distribution in mRNA/prion assemblies which determines whether vectorial channeling can enhance recycling of ribosomes. Our model also addresses the effect of changes of substrate concentration in assemblies that have been suggested previously to explain translational control by assemblies through the introduction of a potential of mean force biasing diffusion of ribosomes inside the assemblies. The results from the model are compared with the experimental data on translational control by two functional RNA-binding prions, CPEB involved in memory and Rim4 involved in gametogenesis.  more » « less
Award ID(s):
2019745 1743392
PAR ID:
10307537
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
47
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2115904118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chen, Shi-Jie (Ed.)
    A prion-like RNA-binding protein, CPEB3, can regulate local translation in dendritic spines. CPEB3 monomers repress translation, whereas CPEB3 aggregates activate translation of its target mRNAs. However, the CPEB3 aggregates, as long-lasting prions, may raise the problem of unregulated translational activation. Here, we propose a computational model of the complex structure between CPEB3 RNA-binding domain (CPEB3-RBD) and small ubiquitin-like modifier protein 2 (SUMO2). Free energy calculations suggest that the allosteric effect of CPEB3-RBD/SUMO2 interaction can amplify the RNA-binding affinity of CPEB3. Combining with previous experimental observations on the SUMOylation mode of CPEB3, this model suggests an equilibrium shift of mRNA from binding to deSUMOylated CPEB3 aggregates to binding to SUMOylated CPEB3 monomers in basal synapses. This work shows how a burst of local translation in synapses can be silenced following a stimulation pulse, and explores the CPEB3/SUMO2 interplay underlying the structural change of synapses and the formation of long-term memories. 
    more » « less
  2. null (Ed.)
    Yeast prions and mnemons are respectively transmissible and non-transmissible self-perpetuating protein assemblies, frequently based on cross-β ordered detergent-resistant aggregates (amyloids). Prions cause devastating diseases in mammals and control heritable traits in yeast. It was shown that the de novo formation of the prion form [PSI+] of yeast release factor Sup35 is facilitated by aggregates of other proteins. Here we explore the mechanism of the promotion of [PSI+] formation by Ste18, an evolutionarily conserved gamma subunit of a G-protein coupled receptor, a key player in responses to extracellular stimuli. Ste18 forms detergent-resistant aggregates, some of which are colocalized with de novo generated Sup35 aggregates. Membrane association of Ste18 is required for both Ste18 aggregation and [PSI+] induction, while functional interactions involved in signal transduction are not essential for these processes. This emphasizes the significance of a specific location for the nucleation of protein aggregation. In contrast to typical prions, Ste18 aggregates do not show a pattern of heritability. Our finding that Ste18 levels are regulated by the ubiquitin-proteasome system, in conjunction with the previously reported increase in Ste18 levels upon the exposure to mating pheromone, suggests that the concentration-dependent Ste18 aggregation may mediate a mnemon-like response to physiological stimuli. 
    more » « less
  3. Abstract Translation initiation on chloroplast psbA mRNA in plants scales with light intensity, providing its gene product, D1, as needed to replace photodamaged D1 in Photosystem II. The psbA translational activator HIGH CHLOROPHYLL FLUORESCENCE 173 (HCF173) has been hypothesized to mediate this regulation. HCF173 belongs to the short-chain dehydrogenase/reductase superfamily, associates with the psbA 5′-untranslated region (5′-UTR), and has been hypothesized to enhance translation by binding an RNA segment that would otherwise pair with and mask the ribosome binding region. To test these hypotheses, we examined whether a synthetic pentatricopeptide repeat (sPPR) protein can substitute for HCF173 when bound to the HCF173 binding site. We show that an sPPR designed to bind HCF173's footprint in the psbA 5′-UTR bound the intended site in vivo and partially substituted for HCF173 to activate psbA translation. However, sPPR-activated translation did not respond to light. These results imply that HCF173 activates translation, at least in part, by sequestering the RNA it binds to maintain an accessible ribosome binding region, and that HCF173 is also required to regulate psbA translation in response to light. Translational activation can be added to the functions that can be programmed with sPPR proteins for synthetic biology applications in chloroplasts. 
    more » « less
  4. Abstract In eukaryotic cells, transcription, translation, and mRNA degradation occur in distinct subcellular regions. How these mRNA processes are organized in bacteria, without employing membrane-bound compartments, remains unclear. Here, we present generalizable principles underlying coordination between these processes in bacteria. InEscherichia coli, we found that co-transcriptional degradation is rare for mRNAs except for those encoding inner membrane proteins, due to membrane localization of the main ribonuclease, RNase E. We further found, by varying ribosome binding sequences, that translation affects mRNA stability not because ribosomes protect mRNA from degradation, but because low translation leads to premature transcription termination in the absence of transcription-translation coupling. Extending our analyses toBacillus subtilisandCaulobacter crescentus, we established subcellular localization of RNase E (or its homolog) and premature transcription termination in the absence of transcription-translation coupling as key determinants that explain differences in transcriptional and translational coupling to mRNA degradation across genes and species. 
    more » « less
  5. Structures in the 5′ untranslated regions (UTRs) of mRNAs can physically modulate translation efficiency by impeding the scanning ribosome or by sequestering the translational start site. We assessed the impact of stable protein binding in 5′- and 3′-UTRs on translation efficiency by targeting the MS2 coat protein to a reporter RNA via its hairpin recognition site. Translation was assessed from the reporter RNA when coexpressed with MS2 coat proteins of varying affinities for the RNA, and at different expression levels. Binding of high-affinity proteins in the 5′-UTR hindered translation, whereas no effect was observed when the coat protein was targeted to the 3′-UTR. Inhibition of translation increased with coat protein concentration and affinity, reaching a maximum of 50%–70%. MS2 proteins engineered to bind two reporter mRNA sites had a stronger effect than those binding a single site. Our findings demonstrate that protein binding in an mRNA 5′-UTR physically impedes translation, with the effect governed by affinity, concentration, and sterics. 
    more » « less