We measure the COtoH_{2}conversion factor (
We present
 NSFPAR ID:
 10307616
 Author(s) / Creator(s):
 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
 Publisher / Repository:
 DOI PREFIX: 10.3847
 Date Published:
 Journal Name:
 The Astrophysical Journal
 Volume:
 919
 Issue:
 2
 ISSN:
 0004637X
 Format(s):
 Medium: X Size: Article No. 124
 Size(s):
 Article No. 124
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract α _{CO}) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from farinfrared emission as a tracer of the gas surface density and assuming a constant dusttometal ratio. In total, we have ∼790 and ∼610 independent measurements ofα _{CO}for CO (2–1) and (1–0), respectively. The mean values forα _{CO (2–1)}andα _{CO (1–0)}are and ${9.3}_{5.4}^{+4.6}$ , respectively. The COintensityweighted mean is 5.69 for ${4.2}_{2.0}^{+1.9}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}\phantom{\rule{0.25em}{0ex}}{\mathrm{pc}}^{2}\phantom{\rule{0.25em}{0ex}}{(\mathrm{K}\phantom{\rule{0.25em}{0ex}}\mathrm{km}\phantom{\rule{0.25em}{0ex}}{\mathrm{s}}^{1})}^{1}$α _{CO (2–1)}and 3.33 forα _{CO (1–0)}. We examine howα _{CO}scales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dustmassweighted average interstellar radiation field strength ( ). Among them, $\overline{U}$ , Σ_{SFR}, and the integrated CO intensity ( $\overline{U}$W _{CO}) have the strongest anticorrelation with spatially resolvedα _{CO}. We provide linear regression results toα _{CO}for all quantities tested. At galaxyintegrated scales, we observe significant correlations betweenα _{CO}andW _{CO}, metallicity, , and Σ_{SFR}. We also find that $\overline{U}$α _{CO}in each galaxy decreases with the stellar mass surface density (Σ_{⋆}) in highsurfacedensity regions (Σ_{⋆}≥ 100M _{⊙}pc^{−2}), following the powerlaw relations and ${\alpha}_{\mathrm{CO}\phantom{\rule{0.25em}{0ex}}(2\u20131)}\propto {\mathrm{\Sigma}}_{\star}^{0.5}$ . The powerlaw index is insensitive to the assumed dusttometal ratio. We interpret the decrease in ${\alpha}_{\mathrm{CO}\phantom{\rule{0.25em}{0ex}}(1\u20130)}\propto {\mathrm{\Sigma}}_{\star}^{0.2}$α _{CO}with increasing Σ_{⋆}as a result of higher velocity dispersion compared to isolated, selfgravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inα _{CO}. The decrease inα _{CO}at high Σ_{⋆}is important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburstlike” conversion factors. 
Abstract We present the
z ≈ 6 type1 quasar luminosity function (QLF), based on the PanSTARRS1 (PS1) quasar survey. The PS1 sample includes 125 quasars atz ≈ 5.7–6.2, with −28 ≲M _{1450}≲ −25. With the addition of 48 fainter quasars from the SHELLQs survey, we evaluate thez ≈ 6 QLF over −28 ≲M _{1450}≲ −22. Adopting a double power law with an exponential evolution of the quasar density (Φ(z ) ∝ 10^{k(z−6)};k = −0.7), we use a maximum likelihood method to model our data. We find a break magnitude of , a faintend slope of ${M}^{*}={26.38}_{0.60}^{+0.79}\phantom{\rule{0.25em}{0ex}}\mathrm{mag}$ , and a steep brightend slope of $\alpha ={1.70}_{0.19}^{+0.29}$ . Based on our new QLF model, we determine the quasar comoving spatial density at $\beta ={3.84}_{1.21}^{+0.63}$z ≈ 6 to be . In comparison with the literature, we find the quasar density to evolve with a constant value of $n({M}_{1450}<26)={1.16}_{0.12}^{+0.13}\phantom{\rule{0.25em}{0ex}}{\mathrm{cGpc}}^{3}$k ≈ −0.7, fromz ≈ 7 toz ≈ 4. Additionally, we derive an ionizing emissivity of , based on the QLF measurement. Given standard assumptions, and the recent measurement of the mean free path by Becker et al. at ${\u03f5}_{912}(z=6)={7.23}_{1.02}^{+1.65}\times {10}^{22}\phantom{\rule{0.25em}{0ex}}\mathrm{erg}\phantom{\rule{0.25em}{0ex}}{\mathrm{s}}^{1}\phantom{\rule{0.25em}{0ex}}{\mathrm{Hz}}^{1}\phantom{\rule{0.25em}{0ex}}{\mathrm{cMpc}}^{3}$z ≈ 6, we calculate an Hi photoionizing rate of Γ_{H I}(z = 6) ≈ 6 × 10^{−16}s^{−1}, strongly disfavoring a dominant role of quasars in hydrogen reionization. 
Abstract We report results from a systematic widearea search for faint dwarf galaxies at heliocentric distances from 0.3 to 2 Mpc using the full 6 yr of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data, this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic galaxies and expect our search to be complete to
M _{V}∼ (−7, −10) mag for galaxies atD = (0.3, 2.0) Mpc. We find no new field dwarfs in the DES footprint, but we report the discovery of one highsignificance candidate dwarf galaxy at a distance of , a potential satellite of the Local Volume galaxy NGC 55, separated by 47′ (physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absolute ${2.2}_{0.12}^{+0.05}\phantom{\rule{0.25em}{0ex}}\mathrm{Mpc}$V band magnitude of and an azimuthally averaged physical halflight radius of ${8.0}_{0.3}^{+0.5}\phantom{\rule{0.25em}{0ex}}\mathrm{mag}$ , making this one of the lowest surface brightness galaxies ever found with ${2.2}_{0.4}^{+0.5}\phantom{\rule{0.25em}{0ex}}\mathrm{kpc}$ . This is the largest, most diffuse galaxy known at this luminosity, suggesting possible tidal interactions with its host. $\mu =32.3\phantom{\rule{0.25em}{0ex}}\mathrm{mag}\phantom{\rule{0.25em}{0ex}}{\mathrm{arcsec}}^{2}$ 
Abstract Using the Keck Planet Imager and Characterizer, we obtained highresolution (
R ∼ 35,000)K band spectra of the four planets orbiting HR 8799. We clearly detected H_{2}O and CO in the atmospheres of HR 8799 c, d, and e, and tentatively detected a combination of CO and H_{2}O in b. These are the most challenging directly imaged exoplanets that have been observed at high spectral resolution to date when considering both their angular separations and flux ratios. We developed a forwardmodeling framework that allows us to jointly fit the spectra of the planets and the diffracted starlight simultaneously in a likelihoodbased approach and obtained posterior probabilities on their effective temperatures, surface gravities, radial velocities, and spins. We measured values of $v\mathrm{sin}(i)$ for HR 8799 d and ${10.1}_{2.7}^{+2.8}\phantom{\rule{0.25em}{0ex}}\mathrm{km}\phantom{\rule{0.25em}{0ex}}{\mathrm{s}}^{1}$ for HR 8799 e, and placed an upper limit of <14 km s^{−1}of HR 8799 c. Under two different assumptions of their obliquities, we found tentative evidence that rotation velocity is anticorrelated with companion mass, which could indicate that magnetic braking with a circumplanetary disk at early times is less efficient at spinning down lowermass planets. ${15.0}_{2.6}^{+2.3}\phantom{\rule{0.25em}{0ex}}\mathrm{km}\phantom{\rule{0.25em}{0ex}}{\mathrm{s}}^{1}$ 
Abstract We present a Keck/MOSFIRE restoptical composite spectrum of 16 typical gravitationally lensed starforming dwarf galaxies at 1.7 ≲
z ≲ 2.6 (z _{mean}= 2.30), all chosen independent of emissionline strength. These galaxies have a median stellar mass of and a median star formation rate of $\mathrm{log}{({M}_{*}/{M}_{\odot})}_{\mathrm{med}}={8.29}_{0.43}^{+0.51}$ . We measure the faint electrontemperaturesensitive [O ${\mathrm{S}\mathrm{F}\mathrm{R}}_{\mathrm{H}\alpha}^{\mathrm{m}\mathrm{e}\mathrm{d}}={2.25}_{1.26}^{+2.15}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}\phantom{\rule{0.25em}{0ex}}{\mathrm{y}\mathrm{r}}^{1}$iii ]λ 4363 emission line at 2.5σ (4.1σ ) significance when considering a bootstrapped (statisticalonly) uncertainty spectrum. This yields a directmethod oxygen abundance of ( $12+\mathrm{log}{(\mathrm{O}/\mathrm{H})}_{\mathrm{direct}}={7.88}_{0.22}^{+0.25}$ ). We investigate the applicability at high ${0.15}_{0.06}^{+0.12}\phantom{\rule{0.33em}{0ex}}{Z}_{\odot}$z of locally calibrated oxygenbased strongline metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strongline ratio. At fixedM _{*}, our composite is well represented by thez ∼ 2.3 directmethod stellar mass—gasphase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories , we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixed $(\mathrm{log}{({M}_{*}/{M}_{\odot})}_{\mathrm{med}}={8.92}_{0.22}^{+0.31})$M _{*}and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii ]λ 3729/[Oii ]λ 3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density of ( ${n}_{e}={1}_{0}^{+215}\phantom{\rule{0.33em}{0ex}}{\mathrm{cm}}^{3}$ ) when considering the bootstrapped (statisticalonly) error spectrum. This result suggests that lowermass galaxies have lower densities than highermass galaxies at ${n}_{e}={1}_{0}^{+74}\phantom{\rule{0.33em}{0ex}}{\mathrm{cm}}^{3}$z ∼ 2.