We measure the CO-to-H2conversion factor (
We present
- NSF-PAR ID:
- 10307616
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 919
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 124
- Size(s):
- Article No. 124
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract α CO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofα COfor CO (2–1) and (1–0), respectively. The mean values forα CO (2–1)andα CO (1–0)are and , respectively. The CO-intensity-weighted mean is 5.69 forα CO (2–1)and 3.33 forα CO (1–0). We examine howα COscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength ( ). Among them, , ΣSFR, and the integrated CO intensity (W CO) have the strongest anticorrelation with spatially resolvedα CO. We provide linear regression results toα COfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenα COandW CO, metallicity, , and ΣSFR. We also find thatα COin each galaxy decreases with the stellar mass surface density (Σ⋆) in high-surface-density regions (Σ⋆≥ 100M ⊙pc−2), following the power-law relations and . The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inα COwith increasing Σ⋆as a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inα CO. The decrease inα COat high Σ⋆is important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors. -
Abstract We present the
z ≈ 6 type-1 quasar luminosity function (QLF), based on the Pan-STARRS1 (PS1) quasar survey. The PS1 sample includes 125 quasars atz ≈ 5.7–6.2, with −28 ≲M 1450≲ −25. With the addition of 48 fainter quasars from the SHELLQs survey, we evaluate thez ≈ 6 QLF over −28 ≲M 1450≲ −22. Adopting a double power law with an exponential evolution of the quasar density (Φ(z ) ∝ 10k (z −6);k = −0.7), we use a maximum likelihood method to model our data. We find a break magnitude of , a faint-end slope of , and a steep bright-end slope of . Based on our new QLF model, we determine the quasar comoving spatial density atz ≈ 6 to be . In comparison with the literature, we find the quasar density to evolve with a constant value ofk ≈ −0.7, fromz ≈ 7 toz ≈ 4. Additionally, we derive an ionizing emissivity of , based on the QLF measurement. Given standard assumptions, and the recent measurement of the mean free path by Becker et al. atz ≈ 6, we calculate an Hi photoionizing rate of ΓH I(z = 6) ≈ 6 × 10−16s−1, strongly disfavoring a dominant role of quasars in hydrogen reionization. -
Abstract We report results from a systematic wide-area search for faint dwarf galaxies at heliocentric distances from 0.3 to 2 Mpc using the full 6 yr of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data, this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic galaxies and expect our search to be complete to
M V ∼ (−7, −10) mag for galaxies atD = (0.3, 2.0) Mpc. We find no new field dwarfs in the DES footprint, but we report the discovery of one high-significance candidate dwarf galaxy at a distance of , a potential satellite of the Local Volume galaxy NGC 55, separated by 47′ (physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absoluteV -band magnitude of and an azimuthally averaged physical half-light radius of , making this one of the lowest surface brightness galaxies ever found with . This is the largest, most diffuse galaxy known at this luminosity, suggesting possible tidal interactions with its host. -
Abstract Using the Keck Planet Imager and Characterizer, we obtained high-resolution (
R ∼ 35,000)K -band spectra of the four planets orbiting HR 8799. We clearly detected H2O and CO in the atmospheres of HR 8799 c, d, and e, and tentatively detected a combination of CO and H2O in b. These are the most challenging directly imaged exoplanets that have been observed at high spectral resolution to date when considering both their angular separations and flux ratios. We developed a forward-modeling framework that allows us to jointly fit the spectra of the planets and the diffracted starlight simultaneously in a likelihood-based approach and obtained posterior probabilities on their effective temperatures, surface gravities, radial velocities, and spins. We measured values of for HR 8799 d and for HR 8799 e, and placed an upper limit of <14 km s−1of HR 8799 c. Under two different assumptions of their obliquities, we found tentative evidence that rotation velocity is anticorrelated with companion mass, which could indicate that magnetic braking with a circumplanetary disk at early times is less efficient at spinning down lower-mass planets. -
Abstract We present a Keck/MOSFIRE rest-optical composite spectrum of 16 typical gravitationally lensed star-forming dwarf galaxies at 1.7 ≲
z ≲ 2.6 (z mean= 2.30), all chosen independent of emission-line strength. These galaxies have a median stellar mass of and a median star formation rate of . We measure the faint electron-temperature-sensitive [Oiii ]λ 4363 emission line at 2.5σ (4.1σ ) significance when considering a bootstrapped (statistical-only) uncertainty spectrum. This yields a direct-method oxygen abundance of ( ). We investigate the applicability at highz of locally calibrated oxygen-based strong-line metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strong-line ratio. At fixedM *, our composite is well represented by thez ∼ 2.3 direct-method stellar mass—gas-phase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories , we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixedM *and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii ]λ 3729/[Oii ]λ 3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density of ( ) when considering the bootstrapped (statistical-only) error spectrum. This result suggests that lower-mass galaxies have lower densities than higher-mass galaxies atz ∼ 2.