skip to main content

Search for: All records

Award ID contains: 2034336

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present measurements of the interferometrically resolved binary star system 12 Com and the single giant star 31 Com in the cluster Coma Berenices. 12 Com is a double-lined spectroscopic binary system consisting of a G7 giant and an A3 dwarf at the cluster turnoff. Using an extensive radial velocity data set and interferometric measurements from the Palomar Testbed Interferometer and the Center for High Angular Resolution Astronomy array, we measured massesM1= 2.64 ± 0.07MandM2= 2.10 ± 0.03M. Interferometry also allows us to resolve the giant and measure its size asR1= 9.12 ± 0.12 ± 0.01R. With the measured masses and radii, we find an age of 533 ± 41 ± 42 Myr. For comparison, we measure the radius of 31 Com to be 8.36 ± 0.15R. Based on the photometry and radius measurements, 12 Com A is likely the most evolved bright star in the cluster, large enough to be in the red giant phase, but too small to have core helium burning. Simultaneous knowledge of 12 Com A’s mass and photometry puts strong constraints on convective core overshooting during the main-sequence phase, which in turn reduces systematic uncertainties in the age. Increased precision in measuring this systemmore »also improves our knowledge of the progenitor of the cluster white dwarf WD1216+260.

    « less
  2. Abstract

    Some evolved binaries, namely post–asymptotic giant branch (AGB) binaries, are surrounded by stable and massive circumbinary disks similar to protoplanetary disks found around young stars. Around 10% of these disks are transition disks: they have a large inner cavity in the dust. Previous interferometric measurements and modeling have ruled out these cavities being formed by dust sublimation and suggested that they are due to massive circumbinary planets that trap dust in the disk and produce the observed depletion of refractory elements on the surfaces of the post-AGB stars. In this study, we test an alternative scenario in which the large cavities could be due to dynamical truncation from the inner binary. We performed near-infrared interferometric observations with the CHARA Array on the archetype of such a transition disk around a post-AGB binary: AC Her. We detect the companion at ten epochs over 4 yr and determine the three-dimensional orbit using these astrometric measurements in combination with a radial velocity time series. This is the first astrometric orbit constructed for a post-AGB binary system. We derive the best-fit orbit with a semimajor axis of 2.01 ± 0.01 mas (2.83 ± 0.08 au), inclination (142.9 ± 1.1)°, and longitude of themore »ascending node (155.1 ± 1.8)°. We find that the theoretical dynamical truncation and dust sublimation radii are at least ∼3× smaller than the observed inner disk radius (∼21.5 mas or 30 au). This strengthens the hypothesis that the origin of the cavity is due to the presence of a circumbinary planet.

    « less
  3. Abstract

    The inner regions of protoplanetary disks host many complex physical processes such as star–disk interactions, magnetic fields, planet formation, and the migration of new planets. To study directly this region requires milliarcsecond angular resolution, beyond the diffraction limit of the world's largest optical telescopes and even too small for the millimeter-wave interferometer Atacama Large Millimeter/submillimeter Array (ALMA). However, we can use infrared interferometers to image the inner astronomical unit. Here, we present new results from the CHARA and VLTI arrays for the young and luminous Herbig Be star HD 190073. We detect a sub-astronomical unit (sub-AU) cavity surrounded by a ring-like structure that we interpret as the dust destruction front. We model the shape with six radial profiles, three symmetric and three asymmetric, and present a model-free image reconstruction. All the models are consistent with a near face-on disk with an inclination ≲20°, and we measure an average ring radius of 1.4 ± 0.2 mas (1.14 au). Around 48% of the total flux comes from the disk with 15% of that emission appearing to emerge from inside the inner rim. The cause of emission is still unclear, perhaps due to different dust grain compositions or gas emission. The skewedmore »models and the imaging point to an off-center star, possibly due to binarity. Our image shows sub-AU structure, which seems to move between the two epochs inconsistently with Keplerian motion and we discuss possible explanations for this apparent change.

    « less
  4. Abstract

    The origin of the bright and hard X-ray emission flux among theγCas subgroup of B-emission line (Be) stars may be caused by gas accretion onto an orbiting white dwarf (WD) companion. Such Be+WD binaries are the predicted outcome of a second stage of mass transfer from a helium star mass donor to a rapidly rotating mass gainer star. The stripped donor stars become small and hot white dwarfs that are extremely faint compared to their Be star companions. Here we discuss model predictions about the physical and orbital properties of Be+WD binaries, and we show that current observational results onγCas systems are consistent with the expected large binary frequency, companion faintness and small mass, and relatively high mass range of the Be star hosts. We determine that the companions are probably not stripped helium stars (hot subdwarf sdO stars), because these are bright enough to detect in ultraviolet spectroscopy, yet their spectroscopic signatures are not observed in studies ofγCas binaries. Interferometry of relatively nearby systems provides the means to detect very faint companions including hot subdwarf and cooler main-sequence stars. Preliminary observations of fiveγCas binaries with the CHARA Array interferometer show no evidence of the companion flux, leaving whitemore »dwarfs as the only viable candidates for the companions.

    « less
  5. Abstract

    Castor is a system of six stars in which the two brighter objects, Castor A and B, revolve around each other every ∼450 yr and are both short-period spectroscopic binaries. They are attended by the more distant Castor C, which is also a binary. Here we report interferometric observations with the Center for High Angular Resolution Astronomy (CHARA) array that spatially resolve the companions in Castor A and B for the first time. We complement these observations with new radial velocity measurements of A and B spanning 30 yr, with the Hipparcos intermediate data, and with existing astrometric observations of the visual AB pair obtained over the past three centuries. We perform a joint orbital solution to solve simultaneously for the three-dimensional orbits of Castor A and B as well as the AB orbit. We find that they are far from being coplanar: the orbit of A is nearly at right angles (92°) relative to the wide orbit, and that of B is inclined about 59° compared to AB. We determine the dynamical masses of the four stars in Castor A and B to a precision better than 1%. We also determine the radii of the primary stars ofmore »both subsystems from their angular diameters measured with the CHARA array, and use them together with stellar evolution models to infer an age for the system of 290 Myr. The new knowledge of the orbits enables us to measure the slow motion of Castor C as well, which may assist future studies of the dynamical evolution of this remarkable sextuple system.

    « less
  6. Abstract

    Because many classical Be stars may owe their nature to mass and angular-momentum transfer in a close binary, the present masses, temperatures, and radii of their components are of high interest for comparison to stellar evolution models. ObjectκDra is a 61.5 day single-lined binary with a B6 IIIe primary. With the CHARA Array instruments MIRC/MIRC-X and MYSTIC, we detected the secondary at (approximately photospheric) flux ratios of 1.49% ± 0.10% and 1.63% ± 0.09% in theHandKband, respectively. From a large and diverse optical spectroscopic database, only the radial velocity curve of the Be star could be extracted. However, employing the parallaxes from Hipparcos and Gaia, which agree within their nominal 1σerrors, we could derive the total mass and found component masses of 3.65 ± 0.48 and 0.426 ± 0.043Mfor the Be star and the companion, respectively. Previous cross-correlation of the observed FUV spectrum with O-type subdwarf (sdO) spectral model templates had not detected a companion belonging to the hot sdO population known from ∼20 earlier-type Be stars. Guided by our full 3D orbital solution, we found a strong cross-correlation signal for a stripped subdwarf B-type companion (FUV flux ratio of 2.3% ± 0.5%), enabling the first firm characterization ofmore »such a star and makingκDra the first mid- to late-type Be star with a directly observed subdwarf companion.

    « less
  7. Abstract

    We observe the brightest member of the Praesepe cluster,ϵCnc, to precisely measure the characteristics of the stars in this binary system, en route to a new measurement of the cluster’s age. We present spectroscopic radial velocity measurements and interferometric observations of the sky-projected orbit to derive the masses, which we find to beM1/M= 2.420 ± 0.008 andM2/M= 2.226 ± 0.004. We place limits on the color–magnitude positions of the stars by using spectroscopic and interferometric luminosity ratios while trying to reproduce the spectral energy distribution ofϵCnc. We reexamine the cluster membership of stars at the bright end of the color–magnitude diagram using Gaia data and literature radial velocity information. The binary star data are consistent with an age of 637 ± 19 Myr, as determined from MIST model isochrones. The masses and luminosities of the stars appear to select models with the most commonly used amount of convective core overshooting.

  8. Abstract

    Classical Be stars are possible products of close binary evolution, in which the mass donor becomes a hot, stripped O- or B-type subdwarf (sdO/sdB), and the mass gainer spins up and grows a disk to become a Be star. While several Be+sdO binaries have been identified, dynamical masses and other fundamental parameters are available only for a single Be+sdO system, limiting the confrontation with binary evolution models. In this work, we present direct interferometric detections of the sdO companions of three Be stars—28 Cyg, V2119 Cyg, and 60 Cyg—all of which were previously found in UV spectra. For two of the three Be+sdO systems, we present first orbits and preliminary dynamical masses of the components, revealing that one of them could be the first identified progenitor of a Be/X-ray binary with a neutron star companion. These results provide new sets of fundamental parameters that are crucially needed to establish the evolutionary status and origin of Be stars.

  9. ABSTRACT

    We present multi-instrument observations of the disc around the Herbig Ae star, HD 145718, employing geometric and Monte Carlo radiative transfer models to explore the disc orientation, the vertical and radial extent of the near-infrared (NIR) scattering surface, and the properties of the dust in the disc surface and sublimation rim. The disc appears inclined at 67–71°, with position angle, PA = −1.0 to 0.6°, consistent with previous estimates. The NIR scattering surface extends out to ${\sim}75\,$ au and we infer an aspect ratio, hscat(r)/r ∼ 0.24 in J band; ∼0.22 in H band. Our Gemini Planet Imager images and VLTI + CHARA NIR interferometry suggest that the disc surface layers are populated by grains ≳λ/2π in size, indicating these grains are aerodynamically supported against settling and/or the density of smaller grains is relatively low. We demonstrate that our geometric analysis provides a reasonable assessment of the height of the NIR scattering surface at the outer edge of the disc and, if the inclination can be independently constrained, has the potential to probe the flaring exponent of the scattering surface in similarly inclined (i ≳ 70°) discs. In re-evaluating HD 145718’s stellar properties, we found that the object’s dimming events – previously characterized as UX Ormore »and dipper variability – are consistent with dust occultation by grains larger, on average, than found in the ISM. This occulting dust likely originates close to the inferred dust sublimation radius at $0.17\,$ au.

    « less
  10. Context . The study of the multiplicity of massive stars gives hints on their formation processes and their evolutionary paths, which are still not fully understood. Large separation binaries (>50 milliseconds of arc, mas) can be probed by adaptive-optics-assisted direct imaging and sparse aperture masking, while close binaries can be resolved by photometry and spectroscopy. However, optical long baseline interferometry is mandatory to establish the multiplicity of Galactic massive stars at the separation gap between 1 and 50 mas. Aims . In this paper, we aim to demonstrate the capability of the new interferometric instrument MIRC-X, located at the CHARA Array, to study the multiplicity of O-type stars and therefore probe the full range of separation for more than 120 massive stars ( H < 7 . 5 mag). Methods . We initiated a pilot survey of bright O-type stars ( H < 6.5 mag) observable with MIRC-X. We observed 29 O-type stars, including two systems in average atmospheric conditions around a magnitude of H = 7.5 mag. We systematically reduced the obtained data with the public reduction pipeline of the instrument. We analyzed the reduced data using the dedicated python software CANDID to detect companions. Results . Out ofmore »these 29 systems, we resolved 19 companions in 17 different systems with angular separations between ~0.5 and 50 mas. This results in a multiplicity fraction ƒ m = 17/29 = 0.59 ± 0.09, and an average number of companions ƒ c = 19/29 = 0.66 ± 0.13. Those results are in agreement with the results of the SMASH+ survey in the Southern Hemisphere. Thirteen of these companions have been resolved for the first time, including the companion responsible for the nonthermal emission in Cyg OB2-5 A and the confirmation of the candidate companion of HD 47129 suggested by SMASH+. Conclusions . A large survey on more than 120 northern O-type stars ( H < 7.5) is possible with MIRC-X and will be fruitful.« less
    Free, publicly-accessible full text available April 1, 2024