skip to main content


Title: When adaptive radiations collide: Different evolutionary trajectories between and within island and mainland lizard clades

Oceanic islands are known as test tubes of evolution. Isolated and colonized by relatively few species, islands are home to many of nature’s most renowned radiations from the finches of the Galápagos to the silverswords of the Hawaiian Islands. Despite the evolutionary exuberance of insular life, island occupation has long been thought to be irreversible. In particular, the presumed much tougher competitive and predatory milieu in continental settings prevents colonization, much less evolutionary diversification, from islands back to mainlands. To test these predictions, we examined the ecological and morphological diversity of neotropicalAnolislizards, which originated in South America, colonized and radiated on various islands in the Caribbean, and then returned and diversified on the mainland. We focus in particular on what happens when mainland and island evolutionary radiations collide. We show that extensive continental radiations can result from island ancestors and that the incumbent and invading mainland clades achieve their ecological and morphological disparity in very different ways. Moreover, we show that when a mainland radiation derived from island ancestors comes into contact with an incumbent mainland radiation the ensuing interactions favor the island-derived clade.

 
more » « less
NSF-PAR ID:
10307901
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
42
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2024451118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    To determine the historical dynamics of colonization and whether the relative timing of colonization predicts diversification rate in the species‐rich, murine rodent communities of Indo‐Australia.

    Location

    Indo‐Australian Archipelago including the Sunda shelf of continental Asia, Sahul shelf of continental Australia, the Philippines and Wallacea of Indonesia.

    Taxon

    Order Rodentia, Family Muridae.

    Methods

    We used a fossil‐calibrated molecular phylogeny and Bayesian biogeographical modelling to infer the frequency and temporal sequence of biogeographical transitions among Sunda, Sahul, the Philippines and Wallacea. We estimated diversification rates for each colonizing lineage using a method‐of‐moments estimator of net diversification and Bayesian mixture model estimates of diversification rate shifts.

    Results

    We identified 17 biogeographical transitions, including nine originating from Sunda, seven originating from Sulawesi and broader Wallacea and one originating from Sahul. Wallacea was colonized eight times, the Phillipines five times, Sunda twice and Sahul twice. Net diversification rates ranged from 0.2 to 2.12 species/lineage/My with higher rates in secondary and later colonizers than primary colonizers. The highest rates were in the genusRattusand their closest relatives, irrespective of colonization history.

    Main Conclusions

    Our inferences from murines demonstrate once again the substantial role of islands as sources of species diversity in terrestrial vertebrates of the IAA with most speciation events occurring on islands. Sulawesi and broader Wallacea have been a major source of colonists for both island and continental systems. Crossings of Wallace's Line were more common than subsequent transitions across Lydekker's Line to the east. While speciation following colonization of oceanic archipelagos and large islands is consistent with adaptive radiation theory and ideas regarding ecological opportunity, we did not observe a strong signal of incumbency effects. Rather, subsequent colonists of landmasses radiated unhindered by previous radiations.

     
    more » « less
  2. Abstract Newly arrived species on young or remote islands are likely to encounter less predation and competition than source populations on continental landmasses. The associated ecological release might facilitate divergence and speciation as colonizing lineages fill previously unoccupied niche space. Characterizing the sequence and timing of colonization on islands represents the first step in determining the relative contributions of geographical isolation and ecological factors in lineage diversification. Herein, we use genome-scale data to estimate timing of colonization in Naesiotus snails to the Galápagos islands from mainland South America. We test inter-island patterns of colonization and within-island radiations to understand their contribution to community assembly. Partly contradicting previously published topologies, phylogenetic reconstructions suggest that most Naesiotus species form island-specific clades, with within-island speciation dominating cladogenesis. Galápagos Naesiotus also adhere to the island progression rule, with colonization proceeding from old to young islands and within-island diversification occurring earlier on older islands. Our work provides a framework for evaluating the contribution of colonization and in situ speciation to the diversity of other Galápagos lineages. 
    more » « less
  3. Abstract

    A key area of interest in evolutionary biology has been understanding the role of ecological opportunity in the formation of adaptive radiations, lineages where speciation and phenotypic diversification are driven by open ecological opportunity. Evolutionary theory posits that adaptive radiations should show initial bursts of ecomorphological diversification and rapid speciation, and that these two processes are correlated. Here, we investigate and contrast these predictions across ecomorphologically diverse continental (Australia) and insular (New Caledonia and New Zealand) radiations of diplodactyloid geckos. We test two key hypotheses: (a) that island colonization and the transition to novel niche-space has resulted in increased rates of speciation and trait diversification and (b) that rates of morphological diversification are correlated across multiple trait axes. Surprisingly, we find that speciation rate is homogenous and morphological diversification rates are idiosyncratic and uncorrelated with speciation rates. Tests of morphological integration suggests that while all traits coevolve, constraint may act differentially on individual axes. This accords with a growing number of studies indicating that ecologically diverse and species-rich radiations can show limited or no evidence of exceptional regime shifts in speciation dynamics or morphological diversification, especially in continental contexts.

     
    more » « less
  4. Abstract

    Island spotted skunks (Spilogale gracilis amphiala) are a rare subspecies endemic to the California Channel Islands, currently extant on Santa Cruz and Santa Rosa islands. How and when skunks arrived on the islands is unknown, hindering decision-making about their taxonomic status and conservation priority. We investigated these questions by sequencing the complete mitochondrial genomes of 55 skunks from the two islands and mainland (California and Arizona) and examining phylogenetic patterns and estimations of isolation times among populations. Island spotted skunks grouped in a single monophyletic clade distinct from mainland spotted skunks. A haplotype network analysis had the most recent common ancestral haplotype sampled from an individual on Santa Rosa, suggesting both islands were colonized by a single matriline. Additionally, no haplotypes were shared between skunk populations on the two islands. These patterns imply that both island populations were derived from a common ancestral population shortly after establishment and have remained isolated from each other ever since. Together with divergence estimates from three methods, this topology is consistent with colonization of the super-island, Santarosae, by a single ancestral population of spotted skunks in the early Holocene, followed by divergence as the sea level rose and split Santarosae into Santa Cruz and Santa Rosa islands 9,400–9,700 years ago. Such a scenario of colonization could be explained either by rafting or one-time transport by Native Americans. Given their distinct evolutionary history, high levels of endemism, and current population status, island spotted skunks may warrant management as distinct evolutionarily significant units.

     
    more » « less
  5. Abstract

    Dietary partitioning often accompanies the increased morphological diversity seen during adaptive radiations within aquatic systems. While such niche partitioning would be expected in older radiations, it is unclear how significant morphological divergence occurs within a shorter time period. Here we show how differential growth in key elements of the feeding mechanism can bring about pronounced functional differences among closely related species. An incredibly young adaptive radiation of threeCyprinodonspecies residing within hypersaline lakes in San Salvador Island, Bahamas, has recently been described. Characterized by distinct head shapes, gut content analyses revealed three discrete feeding modes in these species: basal detritivory as well as derived durophagy and lepidophagy (scale‐feeding). We dissected, cleared and stained, and micro‐CT scanned species to assess functionally relevant differences in craniofacial musculoskeletal elements. The widespread feeding mode previously described for cyprinodontiforms, in which the force of the bite may be secondary to the requisite dexterity needed to pick at food items, is modified within both the scale specialist and the durophagous species. While the scale specialist has greatly emphasized maxillary retraction, using it to overcome the poor mechanical advantage associated with scale‐eating, the durophage has instead stabilized the maxilla. In all species the bulk of the adductor musculature is composed of AM A1. However, the combined masses of both adductor mandibulae (AM) A1 and A3 in the scale specialist were five times that of the other species, showing the importance of growth in functional divergence. The scale specialist combines plesiomorphic jaw mechanisms with both a hypertrophied AM A1 and a slightly modified maxillary anatomy (with substantial functional implications) to generate a bite that is both strong and allows a wide range of motion in the upper jaw, two attributes that normally tradeoff mechanically. Thus, a significant feeding innovation (scale‐eating, rarely seen in fishes) may evolve based largely on allometric changes in ancestral structures. Alternatively, the durophage shows reduced growth with foreshortened jaws that are stabilized by an immobile maxilla. Overall, scale specialists showed the most divergent morphology, suggesting that selection for scale‐biting might be stronger or act on a greater number of traits than selection for either detritivory or durophagy. The scale specialist has colonized an adaptive peak that few lineages have climbed. Thus, heterochronic changes in growth can quickly produce functionally relevant change among closely related species.

     
    more » « less