skip to main content


Title: Phylogeographic and phenotypic outcomes of brown anole colonization across the Caribbean provide insight into the beginning stages of an adaptive radiation
Abstract

Some of the most important insights into the ecological and evolutionary processes of diversification and speciation have come from studies of island adaptive radiations, yet relatively little research has examined how these radiations initiate. We suggest thatAnolis sagreiis a candidate for understanding the origins of the CaribbeanAnolisadaptive radiation and how a colonizing anole species begins to undergo allopatric diversification, phenotypic divergence and, potentially, speciation. We undertook a genomic and morphological analysis of representative populations across the entire native range ofA. sagrei, finding that the species originated in the early Pliocene, with the deepest divergence occurring between western and eastern Cuba. Lineages from these two regions subsequently colonized the northern Caribbean. We find that at the broadest scale, populations colonizing areas with fewer closely related competitors tend to evolve larger body size and more lamellae on their toepads. This trend follows expectations for post‐colonization divergence from progenitors and convergence in allopatry, whereby populations freed from competition with close relatives evolve towards common morphological and ecological optima. Taken together, our results show a complex history of ancient and recent Cuban diaspora with populations on competitor‐poor islands evolving away from their ancestral Cuban populations regardless of their phylogenetic relationships, thus providing insight into the original diversification of colonist anoles at the beginning of the radiation. Our research also supplies an evolutionary framework for the many studies of this increasingly important species in ecological and evolutionary research.

 
more » « less
NSF-PAR ID:
10477791
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Evolutionary Biology
Volume:
33
Issue:
4
ISSN:
1010-061X
Format(s):
Medium: X Size: p. 468-494
Size(s):
["p. 468-494"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Animal signals evolve in an ecological context. Locally adapting animal sexual signals can be especially important for initiating or reinforcing reproductive isolation during the early stages of speciation. Previous studies have demonstrated that dewlap colour inAnolislizards can be highly variable between populations in relation to both biotic and abiotic adaptive drivers at relatively large geographical scales. Here, we investigated differentiation of dewlap colouration among habitat types at a small spatial scale, within multiple islands of the West Indies, to test the hypothesis that similar local adaptive processes occur over smaller spatial scales. We explored variation in dewlap colouration in the most widespread species of anole,Anolis sagrei, across three characteristic habitats spanning the Bahamas and the Cayman Islands, namely beach scrub, primary coppice forest and mangrove forest. Using reflectance spectrometry paired with supervised machine learning, we found significant differences in spectral properties of the dewlap between habitats within small islands, sometimes over very short distances. Passive divergence in dewlap phenotype associated with isolation‐by‐distance did not seem to explain our results. On the other hand, these habitat‐specific dewlap differences varied in magnitude and direction across islands, and thus, our primary test for adaptation—parallel responses across islands—was not supported. We suggest that neutral processes or selection could be involved in several ways, including sexual selection. Our results shed new light on the scale at which signal colour polymorphism can be maintained in the presence of gene flow, and the relative role of local adaptation and other processes in driving these patterns of dewlap colour variation across islands.

     
    more » « less
  2. Oceanic islands are known as test tubes of evolution. Isolated and colonized by relatively few species, islands are home to many of nature’s most renowned radiations from the finches of the Galápagos to the silverswords of the Hawaiian Islands. Despite the evolutionary exuberance of insular life, island occupation has long been thought to be irreversible. In particular, the presumed much tougher competitive and predatory milieu in continental settings prevents colonization, much less evolutionary diversification, from islands back to mainlands. To test these predictions, we examined the ecological and morphological diversity of neotropicalAnolislizards, which originated in South America, colonized and radiated on various islands in the Caribbean, and then returned and diversified on the mainland. We focus in particular on what happens when mainland and island evolutionary radiations collide. We show that extensive continental radiations can result from island ancestors and that the incumbent and invading mainland clades achieve their ecological and morphological disparity in very different ways. Moreover, we show that when a mainland radiation derived from island ancestors comes into contact with an incumbent mainland radiation the ensuing interactions favor the island-derived clade.

     
    more » « less
  3. Abstract

    Adaptive radiations are characterized by the rapid proliferation of species. Explaining how adaptive radiations occur therefore depends, in part, on identifying how populations become reproductively isolated––and ultimately become different species. Such reproductive isolation could arise when populations adapting to novel niches experience selection to avoid interbreeding and, consequently, evolve mating traits that minimize such hybridization via the process of reinforcement. Here, we highlight that a downstream consequence of reinforcement is divergence of conspecific populations, and this further divergence can instigate species proliferation. Moreover, we evaluate when reinforcement will––and will not––promote species proliferation. Finally, we discuss empirical approaches to test what role, if any, reinforcement plays in species proliferation and, consequently, in adaptive radiation. To date, reinforcement’s downstream effects on species proliferation remain largely unknown and speculative. Because the ecological and evolutionary contexts in which adaptive radiations occur are conducive to reinforcement and its downstream consequences, adaptive radiations provide an ideal framework in which to evaluate reinforcement’s role in diversification.

     
    more » « less
  4. Abstract

    Integrative studies have revealed cryptic radiations in several Caribbean lineages of heterobranch sea slugs, raising questions about the evolutionary mechanisms that promote speciation within the tropical Western Atlantic. Cyerce Bergh, 1871 is a genus comprising 12 named species in the family Caliphyllidae that lack the photosynthetic ability of other sacoglossans but are noted for vibrant colours on the large cerata (dorsal leaf-like appendages) that characterize many species. Two species are widely reported from the Caribbean: Cyerce cristallina (Trinchese, 1881) and Cyerce antillensis Engel, 1927. Here, we present an integrative assessment of diversity in Caribbean Cyerce. Four methods of molecular species delimitation supported seven species in samples from the Caribbean and adjacent subtropical Western Atlantic. Six delimited species formed a monophyletic lineage in phylogenetic analyses but were > 9% divergent at the barcoding COI locus and could be differentiated using ecological, reproductive and/or morphological traits. We redescribe C. antillensis, a senior synonym for the poorly known Cyerce habanensis Ortea & Templado, 1988, and describe five new species. Evolutionary shifts in algal host use, penial armature and larval life history might have acted synergistically to promote the rapid divergence of endemic species with restricted distributions in this radiation, substantially increasing global diversity of the genus.

     
    more » « less
  5. Abstract Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies, ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life. 
    more » « less