Abstract Engineered heme protein biocatalysts provide an efficient and sustainable approach to develop amine‐containing compounds through C−H amination. A quantum chemical study to reveal the complete heme catalyzed intramolecular C−H amination pathway and protein axial ligand effect was reported, using reactions of an experimentally used arylsulfonylazide with hemes containing L=none, SH−, MeO−, and MeOH to simulate no axial ligand, negatively charged Cys and Ser ligands, and a neutral ligand for comparison. Nitrene formation was found as the overall rate‐determining step (RDS) and the catalyst with Ser ligand has the best reactivity, consistent with experimental reports. Both RDS and non‐RDS (nitrene transfer) transition states follow the barrier trend of MeO−−
more »
« less
Mammalian complex III heme dynamics studied with pump-probe spectroscopy and red light illuminations
The electronic or molecular mechanisms that initiate photobiomodulation (PBM) in cells are not yet fully understood. The porcine complex III (C-III) of the electron transport chain was characterized with transient absorption spectroscopy (TAS). We then applied our recently developed continuous wave laser coupled TAS procedure (CW-TAS) to investigate the effect of red light irradiances on the heme dynamics of C-III in its c1reduced state. The time constants were found to be 3.3 ± 0.3 ps for vibrational cooling of the oxidized state and 4.9 ± 0.4 ps for rebinding of the photodissociated axial ligand of the c1reduced state. The analysis of the CW-TAS procedure yielded no significant changes in the C-III heme dynamics. We rule out the possibility of 635 nm CW light at 4.7 mW/cm2inducing a PBM effect on the heme dynamic of C-III, specifically with the photodissociation of its axial ligand.
more »
« less
- Award ID(s):
- 2013771
- PAR ID:
- 10307936
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Biomedical Optics Express
- Volume:
- 12
- Issue:
- 11
- ISSN:
- 2156-7085
- Format(s):
- Medium: X Size: Article No. 7082
- Size(s):
- Article No. 7082
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We introduce the heterocumulene ligand [(Ad)NCC(tBu)]−(Ad=1‐adamantyl (C10H15),tBu=tert‐butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid‐base chemistry, which promotes an unprecedented spin‐state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1‐adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI−=ArNC(CH3)CHC(CH3)NAr), Ar=2,6‐iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2−=ArNC(CH3)CHC(CH2)NAr). ComplexAreacts with C≡NAd, to generate the high‐spin [VIII] complex with a κ1‐N‐ynamide ligand, [(BDI)V{κ1‐N‐(Ad)NCC(tBu)}(OTf)] (1). Conversely,Breacts with C≡NAd to generate a low‐spin [VIII] diamagnetic complex having a chelated κ2‐C,N‐azaalleneyl ligand, [(dBDI)V{κ2‐N,C‐(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of2and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between1and2.more » « less
-
Abstract Described is a systematic comparison of factors impacting the relative rates and selectivities of C(sp3)−C and C(sp3)−O bond‐forming reactions at high‐valent Ni as a function of oxidation state. Two Ni complexes are compared: a cationic octahedral NiIVcomplex ligated by tris(pyrazolyl)borate and a cationic octahedral NiIIIcomplex ligated by tris(pyrazolyl)methane. Key features of reactivity/selectivity are revealed: 1) C(sp3)−C(sp2) bond‐forming reductive elimination occurs from both centers, but the NiIIIcomplex reacts up to 300‐fold faster than the NiIV, depending on the reaction conditions. The relative reactivity is proposed to derive from ligand dissociation kinetics, which vary as a function of oxidation state and the presence/absence of visible light. 2) Upon the addition of acetate (AcO−), the NiIVcomplex exclusively undergoes C(sp3)−OAc bond formation, while the NiIIIanalogue forms the C(sp3)−C(sp2) coupled product selectively. This difference is rationalized based on the electrophilicity of the respective M−C(sp3) bonds, and thus their relative reactivity towards outer‐sphere SN2‐type bond‐forming reactions.more » « less
-
The hydroxylation of C–H bonds can be carried out by the high-valent CoIII,IV2(µ-O)2complex2asupported by the tetradentate tris(2-pyridylmethyl)amine ligand via a CoIII2(µ-O)(µ-OH) intermediate (3a). Complex3acan be independently generated either by H-atom transfer (HAT) in the reaction of2awith phenols as the H-atom donor or protonation of its conjugate base, the CoIII2(µ-O)2complex1a. Resonance Raman spectra of these three complexes reveal oxygen-isotope-sensitive vibrations at 560 to 590 cm−1associated with the symmetric Co–O–Co stretching mode of the Co2O2diamond core. Together with a Co•••Co distance of 2.78(2) Å previously identified for1aand2aby Extended X-ray Absorption Fine Structure (EXAFS) analysis, these results provide solid evidence for their “diamond core” structural assignments. The independent generation of3aallows us to investigate HAT reactions of2awith phenols in detail, measure the redox potential and pKaof the system, and calculate the O–H bond strength (DO–H) of3ato shed light on the C–H bond activation reactivity of2a. Complex3ais found to be able to transfer its hydroxyl ligand onto the trityl radical to form the hydroxylated product, representing a direct experimental observation of such a reaction by a dinuclear cobalt complex. Surprisingly, reactivity comparisons reveal2ato be 106-fold more reactive in oxidizing hydrocarbon C–H bonds than corresponding FeIII,IV2(µ-O)2and MnIII,IV2(µ-O)2analogs, an unexpected outcome that raises the prospects for using CoIII,IV2(µ-O)2species to oxidize alkane C–H bonds.more » « less
-
Abstract All‐solid‐state rechargeable sodium (Na)‐ion batteries are promising for inexpensive and high‐energy‐density large‐scale energy storage. In this contribution, new Na solid electrolytes, Na3−yPS4−xClx, are synthesized with a strategic approach, which allows maximum substitution of Cl for S (x= 0.2) without significant compromise of structural integrity or Na deficiency. A maximum conductivity of 1.96 mS cm−1at 25 °C is achieved for Na3.0PS3.8Cl0.2, which is two orders of magnitude higher compared with that of tetragonal Na3PS4(t‐Na3PS4). The activation energy (Ea) is determined to be 0.19 eV. Ab initio molecular dynamics simulations shed light on the merit of maximizing Cl‐doping while maintaining low Na deficiency in enhanced Na‐ion conduction. Solid‐state nuclear magnetic resonance (NMR) characterizations confirm the successful substitution of Cl for S and the resulting change of P oxidation state from 5+ to 4+, which is also verified by spin moment analysis. Ion transport pathways are determined with a tracer‐exchange NMR method. The functional detects that promote Na ‐ion transport are maximized for further improvement in ionic conductivity. Full‐cell performance is demonstrated using Na/Na3.0PS3.8Cl0.2/Na3V2(PO4)3with a reversible capacity of ≈100 mAh g‐1at room temperature.more » « less
An official website of the United States government
