Neutropenia is a condition comprising an abnormally low number of neutrophils, a type of white blood cell, which puts patients at an increased risk of severe infections. Neutropenia is especially common among cancer patients and can disrupt their treatment or even be life-threatening in severe cases. Therefore, routine monitoring of neutrophil counts is crucial. However, the current standard of care to assess neutropenia, the complete blood count (CBC), is resource-intensive, time-consuming, and expensive, thereby limiting easy or timely access to critical hematological information such as neutrophil counts. Here, we present a simple technique for fast, label-free neutropenia detection and grading via deep-ultraviolet (deep-UV) microscopy of blood cells in polydimethylsiloxane (PDMS)-based passive microfluidic devices. The devices can potentially be manufactured in large quantities at a low cost, requiring only 1 μL of whole blood for operation. We show that the absolute neutrophil counts (ANC) obtained from our proposed microfluidic device-enabled deep-UV microscopy system are highly correlated with those from CBCs using commercial hematology analyzers in patients with moderate and severe neutropenia, as well as healthy donors. This work lays the foundation for the development of a compact, easy-to-use UV microscope system to track neutrophil counts that is suitable for low-resource, at-home, or point-of-care settings.
more »
« less
Label-free automated neutropenia detection and grading using deep-ultraviolet microscopy
Neutropenia is a condition identified by an abnormally low number of neutrophils in the bloodstream and signifies an increased risk of severe infection. Cancer patients are particularly susceptible to this condition, which can be disruptive to their treatment and even life-threatening in severe cases. Thus, it is critical to routinely monitor neutrophil counts in cancer patients. However, the standard of care to assess neutropenia, the complete blood count (CBC), requires expensive and complex equipment, as well as cumbersome procedures, which precludes easy or timely access to critical hematological information, namely neutrophil counts. Here we present a simple, low-cost, fast, and robust technique to detect and grade neutropenia based on label-free multi-spectral deep-UV microscopy. Results show that the developed framework for automated segmentation and classification of live, unstained blood cells in a smear accurately differentiates patients with moderate and severe neutropenia from healthy samples in minutes. This work has significant implications towards the development of a low-cost and easy-to-use point-of-care device for tracking neutrophil counts, which can not only improve the quality of life and treatment-outcomes of many patients but can also be lifesaving.
more »
« less
- Award ID(s):
- 1752011
- PAR ID:
- 10308163
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Biomedical Optics Express
- Volume:
- 12
- Issue:
- 10
- ISSN:
- 2156-7085
- Format(s):
- Medium: X Size: Article No. 6115
- Size(s):
- Article No. 6115
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Clinicians and patients must make treatment decisions at a series of key decision points throughout disease progression. A dynamic treatment regime is a set of sequential decision rules that return treatment decisions based on accumulating patient information, like that commonly found in electronic medical record (EMR) data. When applied to a patient population, an optimal treatment regime leads to the most favorable outcome on average. Identifying optimal treatment regimes that maximize residual life is especially desirable for patients with life-threatening diseases such as sepsis, a complex medical condition that involves severe infections with organ dysfunction. We introduce the residual life value estimator (ReLiVE), an estimator for the expected value of cumulative restricted residual life under a fixed treatment regime. Building on ReLiVE, we present a method for estimating an optimal treatment regime that maximizes expected cumulative restricted residual life. Our proposed method, ReLiVE-Q, conducts estimation via the backward induction algorithm Q-learning. We illustrate the utility of ReLiVE-Q in simulation studies, and we apply ReLiVE-Q to estimate an optimal treatment regime for septic patients in the intensive care unit using EMR data from the Multiparameter Intelligent Monitoring Intensive Care database. Ultimately, we demonstrate that ReLiVE-Q leverages accumulating patient information to estimate personalized treatment regimes that optimize a clinically meaningful function of residual life.more » « less
-
Background Lung volume reduction surgery (LVRS) and medical therapy are 2 available treatment options in dealing with severe emphysema, which is a chronic lung disease. However, or there are currently limited guidelines on the timing of LVRS for patients with different characteristics. Objective The objective of this study is to assess the timing of receiving LVRS in terms of patient outcomes, taking into consideration a patient’s characteristics. Methods A finite-horizon Markov decision process model for patients with severe emphysema was developed to determine the short-term (5 y) and long-term timing of emphysema treatment. Maximizing the expected life expectancy, expected quality-adjusted life-years, and total expected cost of each treatment option were applied as the objective functions of the model. To estimate parameters in the model, the data provided by the National Emphysema Treatment Trial were used. Results The results indicate that the treatment timing strategy for patients with upper-lobe predominant emphysema is to receive LVRS regardless of their specific characteristics. However, for patients with non–upper-lobe–predominant emphysema, the optimal strategy depends on the age, maximum workload level, and forced expiratory volume in 1 second level. Conclusion This study demonstrates the utilization of clinical trial data to gain insights into the timing of surgical treatment for patients with emphysema, considering patient age, observable health condition, and location of emphysema. Highlights Both short-term and long-term Markov decision process models were developed to assess the timing of receiving lung volume reduction surgery in patients with severe emphysema. How clinical trial data can be used to estimate the parameters and obtain short-term results from the Markov decision process model is demonstrated. The results provide insights into the timing of receiving lung volume reduction surgery as a function of a patient’s characteristics, including age, emphysema location, maximum workload, and forced expiratory volume in 1 second level.more » « less
-
Hematological analysis, via a complete blood count (CBC) and microscopy, is critical for screening, diagnosing, and monitoring blood conditions and diseases but requires complex equipment, multiple chemical reagents, laborious system calibration and procedures, and highly trained personnel for operation. Here we introduce a hematological assay based on label-free molecular imaging with deep-ultraviolet microscopy that can provide fast quantitative information of key hematological parameters to facilitate and improve hematological analysis. We demonstrate that this label-free approach yields 1) a quantitative five-part white blood cell differential, 2) quantitative red blood cell and hemoglobin characterization, 3) clear identification of platelets, and 4) detailed subcellular morphology. Analysis of tens of thousands of live cells is achieved in minutes without any sample preparation. Finally, we introduce a pseudocolorization scheme that accurately recapitulates the appearance of cells under conventional staining protocols for microscopic analysis of blood smears and bone marrow aspirates. Diagnostic efficacy is evaluated by a panel of hematologists performing a blind analysis of blood smears from healthy donors and thrombocytopenic and sickle cell disease patients. This work has significant implications toward simplifying and improving CBC and blood smear analysis, which is currently performed manually via bright-field microscopy, and toward the development of a low-cost, easy-to-use, and fast hematological analyzer as a point-of-care device and for low-resource settings.more » « less
-
Patient-Reported Outcomes (PRO) are collected directly from the patients using symptom questionnaires. In the case of head and neck cancer patients, PRO surveys are recorded every week during treatment with each patient’s visit to the clinic and at different follow-up times after the treatment has concluded. PRO surveys can be very informative regarding the patient’s status and the effect of treatment on the patient’s quality of life (QoL). Processing PRO data is challenging for several reasons. First, missing data is frequent as patients might skip a question or a questionnaire altogether. Second, PROs are patient-dependent, a rating of 5 for one patient might be a rating of 10 for another patient. Finally, most patients experience severe symptoms during treatment which usually subside over time. However, for some patients, late toxicities persist negatively affecting the patient’s QoL. These long-term severe symptoms are hard to predict and are the focus of this study. In this work, we model PRO data collected from head and neck cancer patients treated at the MD Anderson Cancer Center using the MD Anderson Symptom Inventory (MDASI) questionnaire as time series. We impute missing values with a combination of K nearest neighbor (KNN) and Long Short-Term Memory (LSTM) neural networks, and finally, apply LSTM to predict late symptom severity 12 months after treatment. We compare performance against clinical and ARIMA models. We show that the LSTM model combined with KNN imputation is effective in predicting late-stage symptom ratings for occurrence and severity under the AUC and F1 score metrics.more » « less
An official website of the United States government
