skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Label-free deep-UV microscopy detection and grading of neutropenia using a passive microfluidic device
Neutropenia is a condition comprising an abnormally low number of neutrophils, a type of white blood cell, which puts patients at an increased risk of severe infections. Neutropenia is especially common among cancer patients and can disrupt their treatment or even be life-threatening in severe cases. Therefore, routine monitoring of neutrophil counts is crucial. However, the current standard of care to assess neutropenia, the complete blood count (CBC), is resource-intensive, time-consuming, and expensive, thereby limiting easy or timely access to critical hematological information such as neutrophil counts. Here, we present a simple technique for fast, label-free neutropenia detection and grading via deep-ultraviolet (deep-UV) microscopy of blood cells in polydimethylsiloxane (PDMS)-based passive microfluidic devices. The devices can potentially be manufactured in large quantities at a low cost, requiring only 1 μL of whole blood for operation. We show that the absolute neutrophil counts (ANC) obtained from our proposed microfluidic device-enabled deep-UV microscopy system are highly correlated with those from CBCs using commercial hematology analyzers in patients with moderate and severe neutropenia, as well as healthy donors. This work lays the foundation for the development of a compact, easy-to-use UV microscope system to track neutrophil counts that is suitable for low-resource, at-home, or point-of-care settings.  more » « less
Award ID(s):
1752011
PAR ID:
10380165
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
47
Issue:
22
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 6005
Size(s):
Article No. 6005
Sponsoring Org:
National Science Foundation
More Like this
  1. Neutropenia is a condition identified by an abnormally low number of neutrophils in the bloodstream and signifies an increased risk of severe infection. Cancer patients are particularly susceptible to this condition, which can be disruptive to their treatment and even life-threatening in severe cases. Thus, it is critical to routinely monitor neutrophil counts in cancer patients. However, the standard of care to assess neutropenia, the complete blood count (CBC), requires expensive and complex equipment, as well as cumbersome procedures, which precludes easy or timely access to critical hematological information, namely neutrophil counts. Here we present a simple, low-cost, fast, and robust technique to detect and grade neutropenia based on label-free multi-spectral deep-UV microscopy. Results show that the developed framework for automated segmentation and classification of live, unstained blood cells in a smear accurately differentiates patients with moderate and severe neutropenia from healthy samples in minutes. This work has significant implications towards the development of a low-cost and easy-to-use point-of-care device for tracking neutrophil counts, which can not only improve the quality of life and treatment-outcomes of many patients but can also be lifesaving. 
    more » « less
  2. Hematological analysis, via a complete blood count (CBC) and microscopy, is critical for screening, diagnosing, and monitoring blood conditions and diseases but requires complex equipment, multiple chemical reagents, laborious system calibration and procedures, and highly trained personnel for operation. Here we introduce a hematological assay based on label-free molecular imaging with deep-ultraviolet microscopy that can provide fast quantitative information of key hematological parameters to facilitate and improve hematological analysis. We demonstrate that this label-free approach yields 1) a quantitative five-part white blood cell differential, 2) quantitative red blood cell and hemoglobin characterization, 3) clear identification of platelets, and 4) detailed subcellular morphology. Analysis of tens of thousands of live cells is achieved in minutes without any sample preparation. Finally, we introduce a pseudocolorization scheme that accurately recapitulates the appearance of cells under conventional staining protocols for microscopic analysis of blood smears and bone marrow aspirates. Diagnostic efficacy is evaluated by a panel of hematologists performing a blind analysis of blood smears from healthy donors and thrombocytopenic and sickle cell disease patients. This work has significant implications toward simplifying and improving CBC and blood smear analysis, which is currently performed manually via bright-field microscopy, and toward the development of a low-cost, easy-to-use, and fast hematological analyzer as a point-of-care device and for low-resource settings. 
    more » « less
  3. Deep-ultraviolet (UV) microscopy enables label-free, high-resolution, quantitative molecular imaging and enables unique applications in biomedicine, including the potential for fast hematological analysis at the point-of-care. UV microscopy has been shown to quantify hemoglobin content and white blood cells (five-part differential), providing a simple alternative to the current gold standard, the hematological analyzer. Previously, however, the UV system comprised a bulky broadband laser-driven plasma light source along with a large and expensive camera and 3D translation stage. Here, we present a modified deep-UV microscope system with a compact footprint and low-cost components. We detail the novel design with simple, inexpensive optics and hardware to enable fast and accurate automated imaging. We characterize the system, including a modified low-cost web-camera and custom automated 3D translation stage, and demonstrate its ability to scan and capture large area images. We further demonstrate the capability of the system by imaging and analyzing blood smears, using previously trained networks for automatic segmentation, classification (including 5-part white blood cell differential), and colorization. The developed system is approximately 10 times less expensive than previous configurations and can serve as a point-of-care hematology analyzer, as well as be applied broadly in biomedicine as a simple compact, low-cost, quantitative molecular imaging system. 
    more » « less
  4. Diagnosis of anemia relies on the detection of hemoglobin levels in a blood sample. Conventional blood analyzers are not readily available in most low-resource regions where anemia is prevalent, so detection methods that are low-cost and point-of-care are needed. Here, we present a microfluidic approach to measure hemoglobin concentration in a sample of whole blood. Unlike conventional approaches, our microfluidic approach does not require hemolysis. We detect the level of hemoglobin in a blood sample optically by illuminating the blood in a microfluidic channel at a peak wavelength of 540 nm and measuring its absorbance using a CMOS sensor coupled with a lens to magnify the image onto the detector. We compare measurements in microchannels with channel heights of 50 and 115 μm and found the channel with the 50 μm height provided a better range of detection. Since we use whole blood and not lysed blood, we fit our data to an absorption model that includes optical scattering in order to obtain a calibration curve for our system. Based on this calibration curve and data collected, we can measure hemoglobin concentration within 1 g/dL for severe cases of anemia. In addition, we measured optical density for blood flowing at a shear rate of 500 s-1 and observed it did not affect the nonlinear model. With this method, we provide an approach that uses microfluidic detection of hemoglobin levels that can be integrated with other microfluidic approaches for blood analysis. 
    more » « less
  5. null (Ed.)
    Introduction: Vaso-occlusive crises (VOCs) are a leading cause of morbidity and early mortality in individuals with sickle cell disease (SCD). These crises are triggered by sickle red blood cell (sRBC) aggregation in blood vessels and are influenced by factors such as enhanced sRBC and white blood cell (WBC) adhesion to inflamed endothelium. Advances in microfluidic biomarker assays (i.e., SCD Biochip systems) have led to clinical studies of blood cell adhesion onto endothelial proteins, including, fibronectin, laminin, P-selectin, ICAM-1, functionalized in microchannels. These microfluidic assays allow mimicking the physiological aspects of human microvasculature and help characterize biomechanical properties of adhered sRBCs under flow. However, analysis of the microfluidic biomarker assay data has so far relied on manual cell counting and exhaustive visual morphological characterization of cells by trained personnel. Integrating deep learning algorithms with microscopic imaging of adhesion protein functionalized microfluidic channels can accelerate and standardize accurate classification of blood cells in microfluidic biomarker assays. Here we present a deep learning approach into a general-purpose analytical tool covering a wide range of conditions: channels functionalized with different proteins (laminin or P-selectin), with varying degrees of adhesion by both sRBCs and WBCs, and in both normoxic and hypoxic environments. Methods: Our neural networks were trained on a repository of manually labeled SCD Biochip microfluidic biomarker assay whole channel images. Each channel contained adhered cells pertaining to clinical whole blood under constant shear stress of 0.1 Pa, mimicking physiological levels in post-capillary venules. The machine learning (ML) framework consists of two phases: Phase I segments pixels belonging to blood cells adhered to the microfluidic channel surface, while Phase II associates pixel clusters with specific cell types (sRBCs or WBCs). Phase I is implemented through an ensemble of seven generative fully convolutional neural networks, and Phase II is an ensemble of five neural networks based on a Resnet50 backbone. Each pixel cluster is given a probability of belonging to one of three classes: adhered sRBC, adhered WBC, or non-adhered / other. Results and Discussion: We applied our trained ML framework to 107 novel whole channel images not used during training and compared the results against counts from human experts. As seen in Fig. 1A, there was excellent agreement in counts across all protein and cell types investigated: sRBCs adhered to laminin, sRBCs adhered to P-selectin, and WBCs adhered to P-selectin. Not only was the approach able to handle surfaces functionalized with different proteins, but it also performed well for high cell density images (up to 5000 cells per image) in both normoxic and hypoxic conditions (Fig. 1B). The average uncertainty for the ML counts, obtained from accuracy metrics on the test dataset, was 3%. This uncertainty is a significant improvement on the 20% average uncertainty of the human counts, estimated from the variance in repeated manual analyses of the images. Moreover, manual classification of each image may take up to 2 hours, versus about 6 minutes per image for the ML analysis. Thus, ML provides greater consistency in the classification at a fraction of the processing time. To assess which features the network used to distinguish adhered cells, we generated class activation maps (Fig. 1C-E). These heat maps indicate the regions of focus for the algorithm in making each classification decision. Intriguingly, the highlighted features were similar to those used by human experts: the dimple in partially sickled RBCs, the sharp endpoints for highly sickled RBCs, and the uniform curvature of the WBCs. Overall the robust performance of the ML approach in our study sets the stage for generalizing it to other endothelial proteins and experimental conditions, a first step toward a universal microfluidic ML framework targeting blood disorders. Such a framework would not only be able to integrate advanced biophysical characterization into fast, point-of-care diagnostic devices, but also provide a standardized and reliable way of monitoring patients undergoing targeted therapies and curative interventions, including, stem cell and gene-based therapies for SCD. Disclosures Gurkan: Dx Now Inc.: Patents & Royalties; Xatek Inc.: Patents & Royalties; BioChip Labs: Patents & Royalties; Hemex Health, Inc.: Consultancy, Current Employment, Patents & Royalties, Research Funding. 
    more » « less