skip to main content


Title: Urban agriculture’s bounty: contributions to Phoenix’s sustainability goals
Abstract

With over half of the world’s population living in cities, there is mounting evidence indicating that investments in urban sustainability can deliver high returns on socioeconomic and environmental fronts. Current scholarship on urban agriculture (UA) reports a wide range of benefits which have been shown to vary with the scale and type of benefit examined. Notably, most city-scale studies do not align benefits of UA with locally meaningful goals. We fill this gap by conducting a city-scale analysis for Phoenix, the fifth largest city in the USA by population, and evaluate these benefits based on their ability to contribute to select desired outcomes specified in Phoenix’s 2050 Sustainability Goals: the elimination of food deserts, provision of green open space, and energy and CO2emissions savings from buildings. We consider three types of surfaces for UA deployment—undeveloped vacant lots, flat rooftops, and building façades—and find that the existing building stock provides 71% of available UA space in the study area. The estimated total food supply from UA is 183 000 tons per year, providing local produce in all existing food deserts of Phoenix, and meeting 90% of current annual consumption of fresh produce based on national per capita consumption patterns. UA would also add green open space and reduce by 60% the number of block groups underserved by public parks. Rooftop deployment of UA could reduce energy use in buildings and has the potential to displace more than 50 000 tons of CO2per year. Our work highlights the importance of combining a data-driven framework with local information to address place-based sustainability goals and can be used as a template for city-scale evaluations of UA in alternate settings.

 
more » « less
NSF-PAR ID:
10308419
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
14
Issue:
10
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 105001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    If the material intensive enterprises in an urban area of several million people shared physical resources that might otherwise be wasted, what environmental and public benefits would result? This study develops an algorithm based on lifecycle assessment tools for determining a city’sindustrial symbiosis potential—that is, the sum of the wastes and byproducts from a city’s industrial enterprises that could reasonably serve as resource inputs to other local industrial processes. Rather than report, as do many previous papers, on private benefits to firms, this investigation focuses on public benefits to cities by converting the maximum quantity of resources recoverable by local enterprises into an estimate of the capacity of municipal infrastructure conserved in terms of landfill space and water demand. The results here test this novel approach for the district of Mysuru (Mysore), India. We find that the industrial symbiosis potential calculated based on analysis of the inputs and outputs of ∼1000 urban enterprises, translates into 84 000 tons of industrial waste, greater than 74 000 tons of CO2e, and 22 million liters per day of wastewater. The method introduced here demonstrates how industrial symbiosis links private production and public infrastructure to improve the resource efficiency of a city by creating an opportunity to extend the capacity of public infrastructure and generate public health co-benefits.

     
    more » « less
  2. Lighting is a major component of energy consumption in controlled environment agriculture (CEA) operations. Skyscraper farms (multilevel production in buildings with transparent glazing) have been proposed as alternatives to greenhouse or plant factories (opaque warehouses) to increase space-use efficiency while accessing some natural light. However, there are no previous models on natural light availability and distribution in skyscraper farms. This study employed climate-based daylight modeling software and the Typical Meteorological Year (TMY) dataset to investigate the effects of building geometry and context shading on the availability and spatial distribution of natural light in skyscraper farms in Los Angeles (LA) and New York City (NYC). Electric energy consumption for supplemental lighting in 20-storey skyscraper farms to reach a daily light integral target was calculated using simulation results. Natural lighting in our baseline skyscraper farms without surrounding buildings provides 13% and 15% of the light required to meet a target of 17 mol·m−2·day−1. More elongated buildings may meet up to 27% of the lighting requirements with natural light. However, shading from surrounding buildings can reduce available natural light considerably; in the worst case, natural light only supplies 5% of the lighting requirements. Overall, skyscraper farms require between 4 to 11 times more input for lighting than greenhouses per crop canopy area in the same location. We conclude that the accessibility of natural light in skyscraper farms in dense urban settings provides little advantage over plant factories. 
    more » « less
  3. Abstract

    Across the world, cities are spending billions of dollars to manage urban runoff through decentralized green infrastructure (GI). This research uses an agent‐based model to explore some of the physical, social, and economic consequences of one such urban GI programs. Using the Bronx, NY, as a case study, two alternative approaches to GI application are compared. The first (Model 1) mimics NYC's current GI program by opportunistically selecting sites for GI within the city's priority combined sewer watersheds; the second (Model 2) features a more spatially flexible approach to GI siting, in which the city attempts to maximize opportunities for co‐benefits within the geographic areas considered in Model 1. The effects of both approaches, measured in terms of stormwater captured and co‐benefits (e.g., carbon sequestered) provided, are tracked over 20‐year simulations. While both models suggest it will be difficult to meet the citywide stormwater capture goals (managing the first 2.5 cm of rainfall from 10% of impervious surfaces) in the Bronx solely through public investment in GI, Model 2 shows that by integrating GI with other city initiatives (e.g., sustainability goals and resilience planning), synergistic outcomes are possible. Specifically, Model 2 produces stormwater capture rates comparable to those obtained under Model 1, but these rates are accompanied by elevated co‐benefits for Bronx communities. The results are discussed in the context of future GI policy development in NYC.

     
    more » « less
  4. Abstract As a consequence of the warm and humid climate of tropical coastal regions, there is high energy demand year-round due to air conditioning to maintain indoor comfort levels. Past and current practices are focused on mitigating peak cooling demands by improving heat balances by using efficient building envelope technologies, passive systems, and demand side management strategies. In this study, we explore city-scale solar photovoltaic (PV) planning integrating information on climate, building parameters and energy models, and electrical system performance, with added benefits for the tropical coastal city of San Juan, Puerto Rico. Energy balance on normal roof, flush-mounted PV roof, and tilted PV roof are used to determine PV power generation, air, and roof surface temperatures. To scale up the application to the whole city, we use the urbanized version of the Weather Research and Forecast (WRF) model with the building effect parameterization (BEP) and the building energy model (BEM). The city topology is represented by the World Urban Database Access Portal Tool (WUDAPT), local climate zones (LCZs) for urban landscapes. The modeled peak roof temperature is maximum for normal roof conditions and minimum when inclined PV is installed on a roof. These trends are followed by the building air conditioning (AC) demand from urbanized WRF, maximum for normal roof and minimum for inclined roof-mounted PV. The net result is a reduced daytime Urban Heat Island (UHI) for horizontal and inclined PV roof and increased nighttime UHI for the horizontal PV roof as compared with the normal roof. The ratio between coincident AC demand and PV production for the entire metropolitan region is further analyzed reaching 20% for compact low rise and open low rise buildings due to adequate roof area but reaches almost 100% for compact high rise and compact midrise buildings class, respectively. 
    more » « less
  5. null (Ed.)
    Green spaces have recently received wide acknowledgement for urban sustainability benefits and are mentioned in the Sustainable Development Goals SDGs Target 11.7. The article aims to address the knowledge gap on indicators used for assessment of green spaces for urban sustainability in the Arctic using an example of Nadym, Russia which is illustrative of compact cities built during the Soviet time using a system of microrayons. Different indicators implemented by international organizations for assessment of green spaces are compared with indicators used in Russia. Utilizing very high-resolution WorldView-3 satellite image and open source data, the quantity and quality of green spaces are estimated with high accuracy. In addition to traditionally used indicators of share of green space per capita, share of public spaces for common use within walking distance to assess availability and accessibility of green spaces, the paper suggests importance of taking into account governance, distribution, and composition using analysis of historic legacies, municipal budget allocation for green space maintenance, and Normalized Difference Vegetation Index values. Such detailed view can enrich discussions about green spaces as sources for resilience both at the local and global levels, in comparison with other cities and across countries. 
    more » « less