Abstract BackgroundThe increasing prevalence of plastic waste combined with the inefficiencies of mechanical recycling has inspired interest in processes that can convert these waste streams into value-added biomaterials. To date, the microbial conversion of plastic substrates into biomaterials has been predominantly limited to polyhydroxyalkanoates production. Expanding the capabilities of these microbial conversion platforms to include a greater diversity of products generated from plastic waste streams can serve to promote the adoption of these technologies at a larger scale and encourage a more sustainable materials economy. ResultsHerein, we report the development of a new strain ofPseudomonasbacteria capable of converting depolymerized polyethylene into high value bespoke recombinant protein products. Using hexadecane, a proxy for depolymerized polyethylene, as a sole carbon nutrient source, we optimized media compositions that facilitate robust biomass growth above 1 × 109 cfu/ml, with results suggesting the benefits of lower hydrocarbon concentrations and the use of NH4Cl as a nitrogen source. We genomically integrated recombinant genes for green fluorescent protein and spider dragline-inspired silk protein, and we showed their expression inPseudomonas aeruginosa, reaching titers of approximately 10 mg/L when hexadecane was used as the sole carbon source. Lastly, we demonstrated that chemically depolymerized polyethylene, comprised of a mixture of branched and unbranched alkanes, could be converted into silk protein byPseudomonas aeruginosaat titers of 11.3 ± 1.1 mg/L. ConclusionThis work demonstrates a microbial platform for the conversion of a both alkanes and plastic-derived substrates to recombinant, protein-based materials. The findings in this work can serve as a basis for future endeavors seeking to upcycle recalcitrant plastic wastes into value-added recombinant proteins. 
                        more » 
                        « less   
                    
                            
                            Microbial valorization of underutilized and nonconventional waste streams
                        
                    
    
            Abstract The growing burden of waste disposal coupled with natural resource scarcity has renewed interest in the remediation, valorization, and/or repurposing of waste. Traditional approaches such as composting, anaerobic digestion, use in fertilizers or animal feed, or incineration for energy production extract very little value out of these waste streams. In contrast, waste valorization into fuels and other biochemicals via microbial fermentation is an area of growing interest. In this review, we discuss microbial valorization of nonconventional, aqueous waste streams such as food processing effluents, wastewater streams, and other industrial wastes. We categorize these waste streams as carbohydrate-rich food wastes, lipid-rich wastes, and other industrial wastes. Recent advances in microbial valorization of these nonconventional waste streams are highlighted, along with a discussion of the specific challenges and opportunities associated with impurities, nitrogen content, toxicity, and low productivity. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1911469
- PAR ID:
- 10308442
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of Industrial Microbiology and Biotechnology
- ISSN:
- 1367-5435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Waste from the human food system includes a large quantity of nutrients that pose environmental and human health risks. If these nutrients can be captured and repurposed, they could potentially offset synthetic fertilizer demands. This study reviews several technologies—including anaerobic digestion, hydrothermal carbonization (HTC), and composting—that can be used to process wastes from the human food system. This study also assesses the quantity of nutrient resources that are available from wastes, including food waste, biosolids, manure, and yard waste. Three geographic scales were analyzed. At a national level in the United States, up to 27% of nitrogen and 33% of phosphorus demands for agriculture could be met with wastes from the human food system, primarily from food waste and biosolids. Some rural localities have a greater potential for circular economies of nutrients in the food system, with the potential to meet 100% of nitrogen and phosphorus fertilizer demands using waste nutrients, as in the case of Athens County, Ohio. Benefits of offsetting synthetic fertilizer use with waste nutrients include reduced greenhouse gas (GHG) emissions, with up to 64% reduction in GHG emissions per unit of nitrogen fertilizer produced with HTC.more » « less
- 
            Efficient and sustainable biochemical production using low-cost waste assumes considerable industrial and ecological importance. Solid organic wastes (SOWs) are inexpensive, abundantly available resources and their bioconversion to volatile fatty acids, especially acetate, aids in relieving the requirements of pure sugars for microbial biochemical productions in industries. Acetate production from SOW that utilizes the organic carbon of these wastes is used as an efficient solid waste reduction strategy if the environmental factors are optimized. This study screens and optimizes influential factors (physical and chemical) for acetate production by a thermophilic acetogenic consortium using two SOWs—cafeteria wastes and corn stover. The screening experiment revealed significant effects of temperature, bromoethane sulfonate, and shaking on acetate production. Temperature, medium pH, and C:N ratio were further optimized using statistical optimization with response surface methodology. The maximum acetate concentration of 8061 mg L−1 (>200% improvement) was achieved at temperature, pH, and C:N ratio of 60 °C, 6, 25, respectively, and acetate accounted for more than 85% of metabolites. This study also demonstrated the feasibility of using acetate-rich fermentate (obtained from SOWs) as a substrate for the growth of industrially relevant yeast Yarrowia lipolytica, which can convert acetate into higher-value biochemicals.more » « less
- 
            PurposeFreezing extends the shelf life of food. Home freezing of fresh foods and the purchase of frozen foods have been advocated as approaches to reduce food waste in US households. This paper discusses how commonly US households apply these practices, quantifies frozen food waste and relates these practices to food waste. Design/methodology/approachWe add questions to the summer 2022 wave of the US Household Food Waste Tracking Survey. The novel survey data provide important baseline information and household behaviours, such as food waste, home freezing of fresh food and the purchase of frozen foods. We analyse the association among these behaviours from more than 1,000 US households. FindingsWe find that US household wastes about 26 g per person per week of food that was once frozen, which is about 6% of all household food waste. The finding indicates that a small portion of food waste in US households comes from frozen food. Vegetables and meats are the most commonly discarded frozen foods. Among the frozen items reported as discarded, about 30% were purchased as frozen rather than purchased fresh and then frozen at home by the consumer and about 30% more were reported as discarded from the refrigerator rather than directly from the freezer. The findings are important for informing strategies to reduce household food waste. Research limitations/implicationsWhile the data provide important baseline information and correlate the use of freezing with lower waste levels, more work is needed to understand if interventions encouraging frozen food purchase or home freezing would reduce household food waste. Originality/valueWe provide unique, detailed information about the quantity of frozen food waste in US households and the relationships between consumer food waste and the practices of frozen food purchasing and home freezing.more » « less
- 
            Pataro, Gianpiero; López-Caballero, Elvira; Vecino, Xanel (Ed.)Food waste is a major issue that is increasingly affecting our environment. More than one-third of food is wasted, resulting in over $400 billion in losses to the U.S. economy. While composting and other small recycling practices are encouraged from person-to-person, it is not enough to balance the net loss of 80 million tons per year. Currently, one of the most promising routes for reducing food waste is through microbial fermentation, which can convert the waste into valuable bioproducts. Among the compounds produced from fermentation, 2,3-butanediol (2,3-BDO) has gained interest recently due to its molecular structure as a building block for many other derivatives used in perfumes, synthetic rubber, fumigants, antifreeze agents, fuel additives, and pharmaceuticals. Waste feedstocks, such as food waste, are a potential source of renewable energy due to their lack of cost and availability. Food waste also possesses microbial requirements for growth such as carbohydrates, proteins, fats, and more. However, food waste is highly inconsistent and the variability in composition may hinder its ability to be a stable source for bioproducts such as 2,3-BDO. This current study focuses specifically on post-consumer food waste and how 2,3-BDO can be produced through a non-model organism, Bacillus licheniformis YNP5-TSU during non-sterile fermentation. From the dining hall at Tennessee State University, 13 food waste samples were collected over a 6-month period and the compositional analysis was performed. On average, these samples consisted of fat (19.7%), protein (18.7%), ash (4.8%), fiber (3.4%), starch (27.1%), and soluble sugars (20.9%) on a dry basis with an average moisture content of 34.7%. Food waste samples were also assessed for their potential production of 2,3-BDO during non-sterile thermophilic fermentation, resulting in a max titer of 12.12 g/L and a 33% g/g yield of 2,3-BDO/carbohydrates. These findings are promising and can lead to the better understanding of food waste as a defined feedstock for 2,3-BDO and other fermentation end-products.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
