- Award ID(s):
- 1756958
- PAR ID:
- 10308571
- Date Published:
- Journal Name:
- Weather and Climate Dynamics
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2698-4016
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. Stratosphere-to-troposphere mass transport to the planetaryboundary layer (STT-PBL) peaks over the western United States during borealspring, when deep stratospheric intrusions are most frequent. Thetropopause-level jet structure modulates the frequency and character ofintrusions, although the precise relationship between STT-PBL and jetvariability has not been extensively investigated. In this study, wedemonstrate how the North Pacific jet transition from winter to summer leadsto the observed peak in STT-PBL. We show that the transition enhancesSTT-PBL through an increase in storm track activity which produceshighly amplified Rossby waves and more frequent deep stratosphericintrusions over western North America. This dynamic transition coincideswith the gradually deepening PBL, further facilitating STT-PBL in spring. Wefind that La Niña conditions in late winter are associated with anearlier jet transition and enhanced STT-PBL due to deeper and more frequenttropopause folds. An opposite response is found during El Niñoconditions. El Niño–SouthernOscillation (ENSO) conditions also influence STT-PBL in late spring or earlysummer, during which time La Niña conditions are associated with largerand more frequent tropopause folds than both El Niño and ENSO-neutralconditions. These results suggest that knowledge of ENSO state and the North Pacific jet structure in late winter could be leveraged for predicting thestrength of STT-PBL in the following months.more » « less
-
Abstract. The El Niño–Southern Oscillation (ENSO) is known to modulate the strength and frequency of stratosphere-to-troposphere transport (STT) of ozone over the Pacific–North American region during late winter to early summer. Dynamical processes that have been proposed to account for this variability include variations in the amount of ozone in the lowermoststratosphere that is available for STT and tropospheric circulation-relatedvariations in the frequency and geographic distribution of individual STTevents. Here we use a large ensemble of Whole Atmosphere Community Climate Model(WACCM) simulations (forced by sea-surface temperature (SST) boundaryconditions consistent with each phase of ENSO) to show that variability inlower-stratospheric ozone and shifts in the Pacific tropospheric jetconstructively contribute to the amount of STT of ozone in the NorthAmerican region during both ENSO phases. In terms of stratosphericvariability, ENSO drives ozone anomalies resembling the Pacific–NorthAmerican teleconnection pattern that span much of the lower stratospherebelow 50 hPa. These ozone anomalies, which dominate over other ENSO-drivenchanges in the Brewer–Dobson circulation (including changes due to both thestratospheric residual circulation and quasi-isentropic mixing), stronglymodulate the amount of ozone available for STT transport. As a result,during late winter (February–March), the stratospheric ozone response to theteleconnections constructively reinforces anomalous ENSO-jet-driven STT ofozone. However, as ENSO forcing weakens as spring progresses into summer(April–June), the direct effects of the ENSO-jet-driven STT transportweaken. Nevertheless, the residual impacts of the teleconnections on theamount of ozone in the lower stratosphere persist, and these anomalies inturn continue to cause anomalous STT of ozone. These results should provehelpful for interpreting the utility of ENSO as a subseasonal predictor ofboth free-tropospheric ozone and the probability of stratospheric ozoneintrusion events that may cause exceedances in surface air qualitystandards.more » « less
-
Abstract. Stratosphere-to-troposphere transport (STT) is an important sourceof ozone for the troposphere, particularly over western North America. STTin this region is predominantly controlled by a combination of thevariability and location of the Pacific jet stream and the amount of ozonein the lower stratosphere, two factors which are likely to change ifgreenhouse gas concentrations continue to increase. Here we use WholeAtmosphere Community Climate Model experiments with a tracer ofstratospheric ozone (O3S) to study how end-of-the-century RepresentativeConcentration Pathway (RCP) 8.5 sea surface temperatures (SSTs) andgreenhouse gases (GHGs), in isolation and in combination, influence STT ofozone over western North America relative to a preindustrial controlbackground state. We find that O3S increases by up to 37 % during late winter at 700 hPaover western North America in response to RCP8.5 forcing, with the increasestapering off somewhat during spring and summer. When this response to RCP8.5greenhouse gas forcing is decomposed into the contributions made by futureSSTs alone versus future GHGs alone, the latter are found to be primarilyresponsible for these O3S changes. Both the future SSTs alone and the futureGHGs alone accelerate the Brewer–Dobson circulation, which modifiesextratropical lower-stratospheric ozone mixing ratios. While the future GHGsalone promote a more zonally symmetric lower-stratospheric ozone change dueto enhanced ozone production and some transport, the future SSTs aloneincrease lower-stratospheric ozone predominantly over the North Pacific viatransport associated with a stationary planetary-scale wave. Ozoneaccumulates in the trough of this anomalous wave and is reduced over thewave's ridges, illustrating that the composition of the lower-stratosphericozone reservoir in the future is dependent on the phase and position of thestationary planetary-scale wave response to future SSTs alone, in additionto the poleward mass transport provided by the accelerated Brewer–Dobsoncirculation. Further, the future SSTs alone account for most changes to thelarge-scale circulation in the troposphere and stratosphere compared to theeffect of future GHGs alone. These changes include modifying the positionand speed of the future North Pacific jet, lifting the tropopause,accelerating both the Brewer–Dobson circulation's shallow and deep branches,and enhancing two-way isentropic mixing in the stratosphere.more » « less
-
Abstract Prediction of Saharan dust customarily requires complex aerosols models and observations. A previous study of the Miami, Florida dust record in conjunction to reanalysis data discovered a possible source of subseasonal predictability using a dust‐transport‐efficiency (DTE) index. Development of the Subseasonal Forecast Experiment (SubX) has expanded global forecast products; producing multi‐model ensemble forecasts out to 45 days. Retrospective forecast data from the Community Climate System Model version 4.0 (CCSM4) is used in direct comparison to National Centers for Environmental Prediction (NCEP) reanalysis to evaluate the CCSM4 subseasonal forecast and DTE index prediction skill of weekly dust variability. Successful prediction of weekly dust transport using the DTE index is variable year‐to‐year. The DTE most successfully predicts dust when there is high variability in the tropical winds, likely due to a fluctuating subtropical high, and is not dependent on the overall mean flow or total dust mass transported. The CCSM4 SubX retrospective forecast well represents North Atlantic meteorology out to week‐3 in both mean flow and variability. Dust transport can be predicted using the DTE index and CCSM4 SubX retrospective forecasts at week‐1 leads to the same success as contemporaneous NCEP reanalysis.
-
This study evaluates the possible influence of the winter surface conditions in Eurasia on the summer circulation over the Asian continent and Indo‐Pacific region. We have analysed multi‐seasonal ensemble reforecasts for 30 years (1979–2008) using the National Centers for Environmental Prediction Climate Forecast System version 2 initialized at the beginning of each month from January to May. It is found that the reforecasts initialized in winter (e.g., February) overestimate the snow cover fraction, depth and water equivalent, as well as surface albedo in the excessively snow‐covered portion of Eurasia from March to June. These biases are generated and perpetuated by a snow‐albedo feedback, leading to excessive upwards shortwave radiation reflected from the overly snow‐covered surface and an intense cold bias from the surface to mid‐troposphere. Originating over land, the cold bias is extended eastwards over the northwestern North Pacific by the advection of prevailing westerly winds. The cold air temperature in the broad mid‐latitude Asian‐Pacific region causes significantly lower geopotential heights at pressure levels in the middle and upper troposphere and thus increases the upper‐level westerly winds on its southern flank over the Asian continent and Indo‐Pacific. A slower than observed snow melting rate helps the winter cold bias persists well into the summer season in these runs. As a result, compared with the reforecasts initialized in spring (e.g., May), winter‐initialized reforecasts feature lower geopotential heights in the upper troposphere over Eurasia and a stronger subtropical jet over the Asian continent and the North Pacific from May to September, especially in early summer. The CFSv2 reforecasts in both sets of cases have too little total cloud fraction over Eurasia during June–August, leading to enhanced downwards shortwave radiation.