skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PCPATCH: Software for the Topological Construction of Multigrid Relaxation Methods
Effective relaxation methods are necessary for good multigrid convergence. For many equations, standard Jacobi and Gauß–Seidel are inadequate, and more sophisticated space decompositions are required; examples include problems with semidefinite terms or saddle point structure. In this article, we present a unifying software abstraction, PCPATCH, for the topological construction of space decompositions for multigrid relaxation methods. Space decompositions are specified by collecting topological entities in a mesh (such as all vertices or faces) and applying a construction rule (such as taking all degrees of freedom in the cells around each entity). The software is implemented in PETSc and facilitates the elegant expression of a wide range of schemes merely by varying solver options at runtime. In turn, this allows for the very rapid development of fast solvers for difficult problems.  more » « less
Award ID(s):
1642388
PAR ID:
10308608
Author(s) / Creator(s):
 ;  ;  ;  
Date Published:
Journal Name:
ACM Transactions on Mathematical Software
Volume:
47
Issue:
3
ISSN:
0098-3500
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary This article develops an algebraic multigrid (AMG) method for solving systems of elliptic boundary‐value problems. It is well known that multigrid for systems of elliptic equations faces many challenges that do not arise for most scalar equations. These challenges include strong intervariable couplings, multidimensional and possibly large near‐nullspaces, analytically unknown near‐nullspaces, delicate selection of coarse degrees of freedom (CDOFs), and complex construction of intergrid operators. In this article, we consider only the selection of CDOFs and the construction of the interpolation operator. The selection is an extension of the Ruge–Stuben algorithm using a new strength of connection measure taken between nodal degrees of freedom, that is, between all degrees of freedom located at a gridpoint to all degrees of freedom at another gridpoint. This measure is based on a local correlation matrix generated for a set of smoothed test vectors derived from a relaxation‐based procedure. With this measure, selection of the CDOFs is then determined by the number of strongly correlated connections at each node, with the selection processed by a Ruge–Stuben coloring scheme. Having selected the CDOFs, the interpolation operator is constructed using a bootstrap AMG (BAMG) procedure. We apply the BAMG procedure either over the smoothed test vectors to obtain an intervariable interpolation scheme or over the like‐variable components of the smoothed test vectors to obtain an intravariable interpolation scheme. Moreover, comparing the correlation measured between the intravariable couplings with the correlation between all couplings, a mixed intravariable and intervariable interpolation scheme is developed. We further examine an indirect BAMG method that explicitly uses the coefficients of the system operator in constructing the interpolation weights. Finally, based on a weak approximation criterion, we consider a simple scheme to adapt the order of the interpolation (i.e., adapt the caliber or maximum number of coarse‐grid points that a fine‐grid point can interpolate from) over the computational domain. 
    more » « less
  2. Summary We construct an algebraic multigrid (AMG) based preconditioner for the reduced Hessian of a linear‐quadratic optimization problem constrained by an elliptic partial differential equation. While the preconditioner generalizes a geometric multigrid preconditioner introduced in earlier works, its construction relies entirely on a standard AMG infrastructure built for solving the forward elliptic equation, thus allowing for it to be implemented using a variety of AMG methods and standard packages. Our analysis establishes a clear connection between the quality of the preconditioner and the AMG method used. The proposed strategy has a broad and robust applicability to problems with unstructured grids, complex geometry, and varying coefficients. The method is implemented using the Hypre package and several numerical examples are presented. 
    more » « less
  3. Abstract Problems arising in Earth's mantle convection involve finding the solution to Stokes systems with large viscosity contrasts. These systems contain localized features which, even with adaptive mesh refinement, result in linear systems that can be on the order of 109or more unknowns. One common approach for preconditioning to the velocity block of these systems is to apply an Algebraic Multigrid (AMG) V‐cycle (as is done in the ASPECT software, for example), however, we find that AMG is lacking robustness with respect to problem size and number of parallel processes. Additionally, we see an increase in iteration counts with refinement when using AMG. In contrast, the Geometric Multigrid (GMG) method, by using information about the geometry of the problem, should offer a more robust option.Here we present a matrix‐free GMG V‐cycle which works on adaptively refined, distributed meshes, and we will compare it against the current AMG preconditioner (Trilinos ML) used in theASPECT1software. We will demonstrate the robustness of GMG with respect to problem size and show scaling up to 114,688 cores and 217 billion unknowns. All computations are run using the open‐source, finite element librarydeal.II.2 
    more » « less
  4. Building information modeling (BIM) is facilitating a procedural change for the architecture, engineering, and construction (AEC) industry to share information in all the phases of the life cycle of a building. It possesses great advantages in designing, analyzing, and documenting all physical and functional information of a building and construction project. Structural analysis is an integral part of the life cycle phases of building construction projects. The information needed for structural analysis originates from the architectural model, but the architectural model can be created without much consideration of structural analysis. Software tools used by architects and structural engineers are usually different and sustain information inconsistency and or missing information leading to software interoperability problems. As the first step towards addressing this issue, in this paper, the authors conducted a preliminary literature review in order to identify topics and trends on the BIM interoperability problem with a focus on the structural analysis domain, from both the theoretic perspective and the application perspective. Structural analysis is performed and discussed in the following sections to demonstrate interoperability problems and propose possible solutions. 
    more » « less
  5. This paper introduces a web-based interactive educational platform for 3D/polyhedral graphic statics (PGS) [1]. The Block Research Group (BRG) at ETH Zürich developed a dynamic learning and teaching platform for structural design. This tool is based on traditional graphic statics. It uses interactive 2D drawings to help designers and engineers with all skill levels to understand and utilize the methods [2]. However, polyhedral graphic statics is not easy to learn because of its characteristics in three-dimensional. All the existing computational design tools are heavily dependent on the modeling software such as Rhino or the Python-based computational framework like Compass [3]. In this research, we start with the procedural approach, developing libraries using JavaScript, Three.js, and WebGL to facilitate the construction by making it independent from any software. This framework is developed based on the mathematical and computational algorithms deriving the global equilibrium of the structure, optimizing the balanced relationship between the external magnitudes and the internal forces, visualizing the dynamic reciprocal polyhedral diagrams with corresponding topological data. This instant open-source application and the visualization interface provide a more operative platform for students, educators, practicers, and designers in an interactive manner, allowing them to learn not only the topological relationship but also to deepen their knowledge and understanding of structures in the steps for the construction of the form and force diagrams and analyze it. In the simplified single-node example, the multi-step geometric procedures intuitively illustrate 3D structural reciprocity concepts. With the intuitive control panel, the user can move the constraint point’s location through the inserted gumball function, the force direction of the form diagram will be dynamically changed from compression-only to tension and compression combined. Users can also explore and design innovative, efficient spatial structures with changeable boundary conditions and constraints through real-time manipulating both force distribution and geometric form, such as adding the number of supports or subdividing the global equilibrium in the force diagram. Eventually, there is an option to export the satisfying geometry as a suitable format to share with other fabrication tools. As the online educational environment with different types of geometric examples, it is valuable to use graphical approaches to teach the structural form in an exploratory manner. 
    more » « less