skip to main content


Title: On-the-Fly Attention Modulation for Neural Generation
Despite considerable advancements with deep neural language models (LMs), neural text generation still suffers from degeneration: the generated text is repetitive, generic, selfcontradictory, and often lacks commonsense. Our analyses on sentence-level attention patterns in LMs reveal that neural degeneration may be associated with insufficient learning of task-specific characteristics by the attention mechanism. This finding motivates onthe-fly attention modulation1– a simple but effective method that enables the injection of priors into attention computation during inference. Automatic and human evaluation results on three text generation benchmarks demonstrate that attention modulation helps LMs generate text with enhanced fluency, creativity, and commonsense reasoning, in addition to significantly reduce sentence-level repetition.  more » « less
Award ID(s):
1714566
NSF-PAR ID:
10308686
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the advent of pre-trained language models (LMs), increasing research efforts have been focusing on infusing commonsense and domain-specific knowledge to prepare LMs for downstream tasks. These works attempt to leverage knowledge graphs, the de facto standard of symbolic knowledge representation, along with pre-trained LMs. While existing approaches leverage external knowledge, it remains an open question how to jointly incorporate knowledge graphs represented in varying contexts — from local (e.g., sentence), document-level, to global knowledge, to enable knowledge-rich and interpretable exchange across contexts. In addition, incorporating varying contexts can especially benefit long document understanding tasks that leverage pre-trained LMs, typically bounded by the input sequence length. In light of these challenges, we propose KALM, a language model that jointly leverages knowledge in local, document-level, and global contexts for long document understanding. KALM firstly encodes long documents and knowledge graphs into the three knowledge-aware context representations. KALM then processes each context with context-specific layers. These context-specific layers are followed by a ContextFusion layer that facilitates knowledge exchange to derive an overarching document representation. Extensive experiments demonstrate that KALM achieves state-of-the-art performance on three long document understanding tasks across 6 datasets/settings. Further analyses reveal that the three knowledge-aware contexts are complementary and they all contribute to model performance, while the importance and information exchange patterns of different contexts vary on different tasks and datasets. 
    more » « less
  2. Language understanding involves processing text with both the grammatical and 2 common-sense contexts of the text fragments. The text “I went to the grocery store 3 and brought home a car” requires both the grammatical context (syntactic) and 4 common-sense context (semantic) to capture the oddity in the sentence. Contex5 tualized text representations learned by Language Models (LMs) are expected to 6 capture a variety of syntactic and semantic contexts from large amounts of training 7 data corpora. Recent work such as ERNIE has shown that infusing the knowl8 edge contexts, where they are available in LMs, results in significant performance 9 gains on General Language Understanding (GLUE) benchmark tasks. However, 10 to our knowledge, no knowledge-aware model has attempted to infuse knowledge 11 through top-down semantics-driven syntactic processing (Eg: Common-sense to 12 Grammatical) and directly operated on the attention mechanism that LMs leverage 13 to learn the data context. We propose a learning framework Top-Down Language 14 Representation (TDLR) to infuse common-sense semantics into LMs. In our 15 implementation, we build on BERT for its rich syntactic knowledge and use the 16 knowledge graphs ConceptNet and WordNet to infuse semantic knowledge. 
    more » « less
  3. null (Ed.)
    Identifying and understanding quality phrases from context is a fundamental task in text mining. The most challenging part of this task arguably lies in uncommon, emerging, and domain-specific phrases. The infrequent nature of these phrases significantly hurts the performance of phrase mining methods that rely on sufficient phrase occurrences in the input corpus. Context-aware tagging models, though not restricted by frequency, heavily rely on domain experts for either massive sentence-level gold labels or handcrafted gazetteers. In this work, we propose UCPhrase, a novel unsupervised context-aware quality phrase tagger. Specifically, we induce high-quality phrase spans as silver labels from consistently co-occurring word sequences within each document. Compared with typical context-agnostic distant supervision based on existing knowledge bases (KBs), our silver labels root deeply in the input domain and context, thus having unique advantages in preserving contextual completeness and capturing emerging, out-of-KB phrases. Training a conventional neural tagger based on silver labels usually faces the risk of overfitting phrase surface names. Alternatively, we observe that the contextualized attention maps generated from a Transformer-based neural language model effectively reveal the connections between words in a surface-agnostic way. Therefore, we pair such attention maps with the silver labels to train a lightweight span prediction model, which can be applied to new input to recognize (unseen) quality phrases regardless of their surface names or frequency. Thorough experiments on various tasks and datasets, including corpus-level phrase ranking, document-level keyphrase extraction, and sentence-level phrase tagging, demonstrate the superiority of our design over state-of-the-art pre-trained, unsupervised, and distantly supervised methods. 
    more » « less
  4. Building effective text generation systems requires three critical components: content selection, text planning, and surface realization, and traditionally they are tackled as separate problems. Recent all-in-one style neural generation models have made impressive progress, yet they often produce outputs that are incoherent and unfaithful to the input. To address these issues, we present an end-to-end trained two-step generation model, where a sentence-level content planner first decides on the keyphrases to cover as well as a desired language style, followed by a surface realization decoder that generates relevant and coherent text. For experiments, we consider three tasks from domains with diverse topics and varying language styles: persuasive argument construction from Reddit, paragraph generation for normal and simple versions of Wikipedia, and abstract generation for scientific articles. Automatic evaluation shows that our system can significantly outperform competitive comparisons. Human judges further rate our system generated text as more fluent and correct, compared to the generations by its variants that do not consider language style. 
    more » « less
  5. null (Ed.)
    Subject categories of scholarly papers generally refer to the knowledge domain(s) to which the papers belong, examples being computer science or physics. Subject category classification is a prerequisite for bibliometric studies, organizing scientific publications for domain knowledge extraction, and facilitating faceted searches for digital library search engines. Unfortunately, many academic papers do not have such information as part of their metadata. Most existing methods for solving this task focus on unsupervised learning that often relies on citation networks. However, a complete list of papers citing the current paper may not be readily available. In particular, new papers that have few or no citations cannot be classified using such methods. Here, we propose a deep attentive neural network (DANN) that classifies scholarly papers using only their abstracts. The network is trained using nine million abstracts from Web of Science (WoS). We also use the WoS schema that covers 104 subject categories. The proposed network consists of two bi-directional recurrent neural networks followed by an attention layer. We compare our model against baselines by varying the architecture and text representation. Our best model achieves micro- F 1 measure of 0.76 with F 1 of individual subject categories ranging from 0.50 to 0.95. The results showed the importance of retraining word embedding models to maximize the vocabulary overlap and the effectiveness of the attention mechanism. The combination of word vectors with TFIDF outperforms character and sentence level embedding models. We discuss imbalanced samples and overlapping categories and suggest possible strategies for mitigation. We also determine the subject category distribution in CiteSeerX by classifying a random sample of one million academic papers. 
    more » « less