skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Edited Media Understanding: Reasoning About Implications of Manipulated Images
Multimodal disinformation, from `deepfakes' to simple edits that deceive, is an important societal problem. Yet at the same time, the vast majority of media edits are harmless -- such as a filtered vacation photo. The difference between this example, and harmful edits that spread disinformation, is one of intent. Recognizing and describing this intent is a major challenge for today's AI systems. We present the task of Edited Media Understanding, requiring models to answer open-ended questions that capture the intent and implications of an image edit. We introduce a dataset for our task, EMU, with 48k question-answer pairs written in rich natural language. We evaluate a wide variety of vision-and-language models for our task, and introduce a new model PELICAN, which builds upon recent progress in pretrained multimodal representations. Our model obtains promising results on our dataset, with humans rating its answers as accurate 40.35% of the time. At the same time, there is still much work to be done -- humans prefer human-annotated captions 93.56% of the time -- and we provide analysis that highlights areas for further progress.  more » « less
Award ID(s):
1714566
PAR ID:
10308689
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Association for Computational Linguistics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, there have been significant advances and wide-scale use of generative AI in natural language generation. Models such as OpenAI’s GPT3 and Meta’s LLaMA are widely used in chatbots, to summarize documents, and to generate creative content. These advances raise concerns about abuses of these models, especially in social media settings, such as large-scale generation of disinformation, manipulation campaigns that use AI-generated content, and personalized scams. We used stylometry (the analysis of style in natural language text) to analyze the style of AI-generated text. Specifically, we applied an existing authorship verification (AV) model that can predict if two documents are written by the same author on texts generated by GPT2, GPT3, ChatGPT and LLaMA. Our AV model was trained only on human-written text and was effectively used in social media settings to analyze cases of abuse. We generated texts by providing the language models with fanfiction snippets and prompting them to complete the rest of it in the same writing style as the original snippet. We then applied the AV model across the texts generated by the language models and the human written texts to analyze the similarity of the writing styles between these texts. We found that texts generated with GPT2 had the highest similarity to the human texts. Texts generated by GPT3 and ChatGPT were very different from the human snippet, and were similar to each other. LLaMA-generated texts had some similarity to the original snippet but also has similarities with other LLaMA-generated texts and texts from other models. We then conducted a feature analysis to identify the features that drive these similarity scores. This analysis helped us answer questions like which features distinguish the language style of language models and humans, which features are different across different models, and how these linguistic features change over different language model versions. The dataset and the source code used in this analysis have been made public to allow for further analysis of new language models. 
    more » « less
  2. As intelligent systems increasingly blend into our everyday life, artificial social intelligence becomes a prominent area of research. Intelligent systems must be socially intelligent in order to comprehend human intents and maintain a rich level of interaction with humans. Human language offers a unique unconstrained approach to probe through questions and reason through answers about social situations. This unconstrained approach extends previous attempts to model social intelligence through numeric supervision (e.g. sentiment and emotions labels). In this paper, we introduce the Social-IQ, an unconstrained benchmark specifically designed to train and evaluate socially intelligent technologies. By providing a rich source of open-ended questions and answers, Social-IQ opens the door to explainable social intelligence. The dataset contains rigorously annotated and validated videos, questions and answers, as well as annotations for the complexity level of each question and answer. Social- IQ contains 1, 250 natural in-thewild social situations, 7, 500 questions and 52, 500 correct and incorrect answers. Although humans can reason about social situations with very high accuracy (95.08%), existing state-of-the-art computational models struggle on this task. As a result, Social-IQ brings novel challenges that will spark future research in social intelligence modeling, visual reasoning, and multimodal question answering (QA). 
    more » « less
  3. Generative models such as Large Language Models (LLM) and Multimodal Large Language models (MLLMs) trained on massive web corpora can memorize and disclose individuals’ confidential and private data, raising legal and ethical concerns. While many previous works have addressed this issue in LLM via machine unlearning, it remains largely unexplored for MLLMs. To tackle this challenge, we introduce Multimodal Large Language Model Unlearning Benchmark (MLLMU-Bench), a novel benchmark aimed at advancing the understanding of multimodal machine unlearning. MLLMU-Bench consists of 500 fictitious profiles and 153 profiles for public celebrities, each profile feature over 14 customized question-answer pairs, evaluated from both multimodal (image+text) and unimodal (text) perspectives. The benchmark is divided into four sets to assess unlearning algorithms in terms of efficacy, generalizability, and model utility. Finally, we provide baseline results using existing generative model unlearning algorithms. Surprisingly, our experiments show that unimodal unlearning algorithms excel in generation tasks, while multimodal unlearning approaches perform better in classification with multimodal inputs. 
    more » « less
  4. Situations and events evoke emotions in humans, but to what extent do they inform the prediction of emotion detection models? This work investigates how well human-annotated emotion triggers correlate with features that models deemed salient in their prediction of emotions. First, we introduce a novel dataset EmoTrigger, consisting of 900 social media posts sourced from three different datasets; these were annotated by experts for emotion triggers with high agreement. Using EmoTrigger, we evaluate the ability of large language models (LLMs) to identify emotion triggers, and conduct a comparative analysis of the features considered important for these tasks between LLMs and fine-tuned models. Our analysis reveals that emotion triggers are largely not considered salient features for emotion prediction models, instead there is intricate interplay between various features and the task of emotion detection. 
    more » « less
  5. News media is expected to uphold unbiased reporting. Yet they may still affect public opinion by selectively including or omitting events that support or contradict their ideological positions. Prior work in NLP has only studied media bias via linguistic style and word usage. In this paper, we study to which degree media balances news reporting and affects consumers through event inclusion or omission. We first introduce the task of detecting both partisan and counter- partisan events: events that support or oppose the author’s political ideology. To conduct our study, we annotate a high-quality dataset, PAC, containing 8 , 511 (counter-)partisan event annotations in 304 news articles from ideologically diverse media outlets. We benchmark PAC to highlight the challenges of this task. Our findings highlight both the ways in which the news subtly shapes opinion and the need for large language models that better understand events within a broader context. Our dataset can be found at https://github.com/ launchnlp/Partisan-Event-Dataset. 
    more » « less