skip to main content

Title: Governance Attributes of Consortium Blockchain Applications
As a foundational and disruptive technology with unique features, blockchains can provide distinct technology pushes for novel business models, strategies, processes, and applications. Revised or new business models can be iteratively refined and transformed to increasingly more detailed design and implementation models to be realized by applications supported by blockchains. Governance concerns with how decisions are made, implemented, and controlled. It is an important focal point of any model and process. Blockchain enables new governance opportunities that are trusted, decentralized, automated, accountable, secured, and privacy-protected. These opportunities can be used to analyze governance issues in constructing models, processes, and blockchain applications. Based on our prototyping experience in two permissioned blockchain platforms, we propose a framework of six governance attributes for constructing consortium blockchain applications: decision process, accountability and verifiability, trust, incentive, security and privacy, and effectiveness. The framework aids in exploring blockchain-created governance opportunities and driving future research.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Twenty-Seventh Americas Conference on Information Systems, Montreal, 2021
Sponsoring Org:
National Science Foundation
More Like this
  1. Reddy, S. ; Winter, J.S. ; Padmanabhan, S. (Ed.)
    AI applications are poised to transform health care, revolutionizing benefits for individuals, communities, and health-care systems. As the articles in this special issue aptly illustrate, AI innovations in healthcare are maturing from early success in medical imaging and robotic process automation, promising a broad range of new applications. This is evidenced by the rapid deployment of AI to address critical challenges related to the COVID-19 pandemic, including disease diagnosis and monitoring, drug discovery, and vaccine development. At the heart of these innovations is the health data required for deep learning applications. Rapid accumulation of data, along with improved data quality, data sharing, and standardization, enable development of deep learning algorithms in many healthcare applications. One of the great challenges for healthcare AI is effective governance of these data—ensuring thoughtful aggregation and appropriate access to fuel innovation and improve patient outcomes and healthcare system efficiency while protecting the privacy and security of data subjects. Yet the literature on data governance has rarely looked beyond important pragmatic issues related to privacy and security. Less consideration has been given to unexpected or undesirable outcomes of healthcare in AI, such as clinician deskilling, algorithmic bias, the “regulatory vacuum”, and lack of public engagement. Amidstmore »growing calls for ethical governance of algorithms, Reddy et al. developed a governance model for AI in healthcare delivery, focusing on principles of fairness, accountability, and transparency (FAT), and trustworthiness, and calling for wider discussion. Winter and Davidson emphasize the need to identify underlying values of healthcare data and use, noting the many competing interests and goals for use of health data—such as healthcare system efficiency and reform, patient and community health, intellectual property development, and monetization. Beyond the important considerations of privacy and security, governance must consider who will benefit from healthcare AI, and who will not. Whose values drive health AI innovation and use? How can we ensure that innovations are not limited to the wealthiest individuals or nations? As large technology companies begin to partner with health care systems, and as personally generated health data (PGHD) (e.g., fitness trackers, continuous glucose monitors, health information searches on the Internet) proliferate, who has oversight of these complex technical systems, which are essentially a black box? To tackle these complex and important issues, it is important to acknowledge that we have entered a new technical, organizational, and policy environment due to linked data, big data analytics, and AI. Data governance is no longer the responsibility of a single organization. Rather, multiple networked entities play a role and responsibilities may be blurred. This also raises many concerns related to data localization and jurisdiction—who is responsible for data governance? In this emerging environment, data may no longer be effectively governed through traditional policy models or instruments.« less
  2. In the era of cloud computing and big data analysis, how to efficiently share and utilize medical information scattered across various care providers has become a critical problem. This paper proposes a new framework for sharing medical data in a secure and privacy-preserving way. This framework holistically integrates multi-authority attribute based encryption, blockchain and smart contract, as well as software defined networking to define and enforce sharing policies. Specifically in our framework, patients' medical records are encrypted and stored in hospital databases, where strict access controls are enforced with attribute based encryption coupled with privacy level classification. Our framework leverages blockchain technology to connect scattered private databases from participating hospitals for efficient and secure data provision, smart contracts to enable the business logic of clinical data usage, and software defined networking to revoke sharing privileges. The performance evaluation of our prototype demonstrates that the associated computation costs are reasonable in practice.
  3. Darmont, J ; Novikov, B. ; Wrembel, R. (Ed.)
    Bitcoin [12] is a successful and interesting example of a global scale peer-to-peer cryptocurrency that integrates many techniques and protocols from cryptography, distributed systems, and databases. The main underlying data structure is blockchain, a scalable fully replicated structure that is shared among all participants and guarantees a consistent view of all user transactions by all participants in the system. In a blockchain, nodes agree on their shared states across a large network of untrusted participants. Although originally devised for cryptocurrencies, recent systems exploit its many unique features such as transparency, provenance, fault tolerance, and authenticity to support a wide range of distributed applications. Bitcoin and other cryptocurrencies use permissionless blockchains. In a permissionless blockchain, the network is public, and anyone can participate without a specific identity. Many other distributed applications, such as supply chain management and healthcare, are deployed on permissioned blockchains consisting of a set of known, identified nodes that still might not fully trust each other. This paper illustrates some of the main challenges and opportunities from a database perspective in the many novel and interesting application domains of blockchains. These opportunities are illustrated using various examples from recent research in both permissionless and permissioned blockchains. Two mainmore »themes unite the various examples: (1) the important role of distribution and consensus in managing large scale systems and (2) the need to tolerate malicious failures. The advent of cloud computing and large data centers shifted large scale data management infrastructures from centralized databases to distributed systems. One of the main challenges in designing distributed systems is the need for fault-tolerance. Cloud-based systems typically assume trusted infrastructures, since data centers are owned by the enterprises managing the data, and hence the design typically only assumes and tolerates crash failures. The advent of blockchain and the underlying premise that copies of the blockchain are distributed among untrusted entities has shifted the focus of fault-tolerance from tolerating crash failures to tolerating malicious failures. These interesting and challenging settings pose great opportunities for database researchers.« less
  4. Blockchain interoperability, which allows state transitions across different blockchain networks, is critical functionality to facilitate major blockchain adoption. Existing interoperability protocols mostly focus on atomic token exchanges between blockchains. However, as blockchains have been upgraded from passive distributed ledgers into programmable state machines (thanks to smart contracts), the scope of blockchain interoperability goes beyond just token exchanges. In this paper, we present HyperService, the first platform that delivers interoperability and programmability across heterogeneous blockchains. HyperService is powered by two innovative designs: (i) a developer-facing programming framework that allows developers to build cross-chain applications in a unified programming model; and (ii) a secure blockchain-facing cryptography protocol that provably realizes those applications on blockchains. We implement a prototype of HyperService in approximately 35,000 lines of code to demonstrate its practicality. Our experiments show that (i) HyperService imposes reasonable latency, in order of seconds, on the end-to-end execution of cross-chain applications; (ii) the HyperService platform is scalable to continuously incorporate new large-scale production blockchains.
  5. Blockchain is the technology used by developers of cryptocurrencies, like Bitcoin, to enable exchange of financial “coins” between participants in the absence of a trusted third party to ensure the transaction, such as is typically done by governments. Blockchain has evolved to become a generic approach to store and process data in a highly decentralized and secure way. In this article, we review blockchain concepts and use cases, and discuss the challenges in using them from a governmental viewpoint. We begin with reviewing the categories of blockchains, the underlying mechanisms, and why blockchains can achieve their security goals. We then review existing known governmental use cases by regions. To show both technical and deployment details of blockchain adoption, we study a few representative use cases in the domains of healthcare and energy infrastructures. Finally, the review of both technical details and use cases helps us summarize the adoption and technical challenges of blockchains.