skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 6, 2026

Title: Blockchain Security and Privacy: Threats, Challenges, Applications, and Tools
Blockchain technology has heralded a new era in digital innovation, revolutionizing our approach to designing and building distributed applications in the digital sphere. Blockchain technology operates as an immutable digital ledger, where each entry representing a digital transaction is indelible and cannot be altered once established. Initially designed as the fundamental framework for cryptocurrencies, blockchain has outgrown its original purpose, demonstrating significant potential in various industries and offering a variety of security and privacy features. Our study provides a thorough and current survey of blockchain applications, security, privacy concepts, primitives, and threat models. It stands out by concentrating on how blockchain technology intersects with emerging fields like IoT, EVs, FinTech, and healthcare systems in a single framework. To provide security and privacy features, blockchain systems employ different foundational notions and primitives while tackling diverse adversarial scenarios with various capabilities and goals. This study presents a fresh examination of the current state of applications, security and privacy notions and primitives, and threat models in blockchain systems. Additionally, this work highlights existing gaps in knowledge and outlines open questions, aiming to stimulate interest in further advancements in the field.  more » « less
Award ID(s):
2325452
PAR ID:
10639801
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
ACM Digital Library
Date Published:
Journal Name:
Distributed Ledger Technologies: Research and Practice
ISSN:
2769-6480
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As a foundational and disruptive technology with unique features, blockchains can provide distinct technology pushes for novel business models, strategies, processes, and applications. Revised or new business models can be iteratively refined and transformed to increasingly more detailed design and implementation models to be realized by applications supported by blockchains. Governance concerns with how decisions are made, implemented, and controlled. It is an important focal point of any model and process. Blockchain enables new governance opportunities that are trusted, decentralized, automated, accountable, secured, and privacy-protected. These opportunities can be used to analyze governance issues in constructing models, processes, and blockchain applications. Based on our prototyping experience in two permissioned blockchain platforms, we propose a framework of six governance attributes for constructing consortium blockchain applications: decision process, accountability and verifiability, trust, incentive, security and privacy, and effectiveness. The framework aids in exploring blockchain-created governance opportunities and driving future research. 
    more » « less
  2. Near-field communication (NFC) is one of the essential technologies in the Internet of Things (IoT) that has facilitated mobile payment across different services. The technology has become increasingly popular, as cryptocurrencies like Bitcoin have revolutionized how payment systems can be designed. However, this technology is subject to security problems, such as man-in-the-middle attacks, double-spending, and replay attacks, raising the need to incorporate other solutions such as blockchain technology. Concerns about the security and privacy of payments using NFC technology raise the need to adopt blockchain-based cryptocurrency payment. For instance, NFC payment has been criticized for a lack of measures to counter potential attacks, such as brute force or double-spending. Thus, incorporating blockchain technology is expected to improve the security features of the NFC mobile payment protocol and improve user experience. Blockchain technology has been praised for enabling fair payment, as it permits direct transactions without engaging a third party. Therefore, integrating blockchain cryptocurrency in IoT devices will revolutionize the NFC payment method and provide value transfer using IoT devices. Combining NFC with blockchain technology and cryptocurrencies is necessary to address security and privacy problems. The purpose of this paper is to explore the potential behind incorporating blockchain technology and cryptocurrencies like Bitcoin in the NFC payment protocol. 
    more » « less
  3. Diabetes is a global epidemic with severe consequences for individuals and healthcare systems. While early and personalized prediction can significantly improve outcomes, traditional centralized prediction models suffer from privacy risks and limited data diversity. This paper introduces a novel framework that integrates blockchain and federated learning to address these challenges. Blockchain provides a secure, decentralized foundation for data management, access control, and auditability. Federated learning enables model training on distributed datasets without compromising patient privacy. This collaborative approach facilitates the development of more robust and personalized diabetes prediction models, leveraging the combined data resources of multiple healthcare institutions. We have performed extensive evaluation experiments and security analyses. The results demonstrate good performance while significantly enhancing privacy and security compared to centralized approaches. Our framework offers a promising solution for the ethical and effective use of healthcare data in diabetes prediction. 
    more » « less
  4. Prior studies have already predicted that enforcement of IP on the additive manufacturing industry will not be successful due to the widespread use of file-sharing technologies, similar to the entertainment and music industry. This paper discusses the capabilities of Blockchain technology for protecting IP in the design and manufacturing area. A conceptual framework for a digital platform is defined in this paper and further, a survey study of engineering design and manufacturing students has been conducted to identify the main motivation behind developing these platforms and the types of features that should be included in Blockchain-based IP platforms for asset protection, particularly for product design. In addition, respondents provided their opinions about the type of industry that might be affected more by the threat of counterfeiting products and the role of Blockchain-based IP systems on the growth and development of innovation. 
    more » « less
  5. Blockchain technology has been recognized as a promising solution to enhance the security and privacy of Internet of Things (IoT) and Edge Computing scenarios. Taking advantage of the Proof-of-Work (PoW) consensus protocol, which solves a computation intensive hashing puzzle, Blockchain ensures the security of the system by establishing a digital ledger. However, the computation intensive PoW favors members possessing more computing power. In the IoT paradigm, fairness in the highly heterogeneous network edge environments must consider devices with various constraints on computation power. Inspired by the advanced features of Digital Twins (DT), an emerging concept that mirrors the lifespan and operational characteristics of physical objects, we propose a novel Miner Twins (MinT) architecture to enable a fair PoW consensus mechanism for blockchains in IoT environments. MinT adopts an edge-fog-cloud hierarchy. All physical miners of the blockchain are deployed as microservices on distributed edge devices, while fog/cloud servers maintain digital twins that periodically update miners’ running status. By timely monitoring of a miner’s footprint that is mirrored by twins, a lightweight Singular Spectrum Analysis (SSA)-based detection achieves the identification of individual misbehaved miners that violate fair mining. Moreover, we also design a novel Proof-of-Behavior (PoB) consensus algorithm to detect dishonest miners that collude to control a fair mining network. A preliminary study is conducted on a proof-of-concept prototype implementation, and experimental evaluation shows the feasibility and effectiveness of the proposed MinT scheme under a distributed byzantine network environment. 
    more » « less