Abstract Let $$V_*\otimes V\rightarrow {\mathbb {C}}$$ V ∗ ⊗ V → C be a non-degenerate pairing of countable-dimensional complex vector spaces V and $$V_*$$ V ∗ . The Mackey Lie algebra $${\mathfrak {g}}=\mathfrak {gl}^M(V,V_*)$$ g = gl M ( V , V ∗ ) corresponding to this pairing consists of all endomorphisms $$\varphi $$ φ of V for which the space $$V_*$$ V ∗ is stable under the dual endomorphism $$\varphi ^*: V^*\rightarrow V^*$$ φ ∗ : V ∗ → V ∗ . We study the tensor Grothendieck category $${\mathbb {T}}$$ T generated by the $${\mathfrak {g}}$$ g -modules V , $$V_*$$ V ∗ and their algebraic duals $$V^*$$ V ∗ and $$V^*_*$$ V ∗ ∗ . The category $${{\mathbb {T}}}$$ T is an analogue of categories considered in prior literature, the main difference being that the trivial module $${\mathbb {C}}$$ C is no longer injective in $${\mathbb {T}}$$ T . We describe the injective hull I of $${\mathbb {C}}$$ C in $${\mathbb {T}}$$ T , and show that the category $${\mathbb {T}}$$ T is Koszul. In addition, we prove that I is endowed with a natural structure of commutative algebra. We then define another category $$_I{\mathbb {T}}$$ I T of objects in $${\mathbb {T}}$$ T which are free as I -modules. Our main result is that the category $${}_I{\mathbb {T}}$$ I T is also Koszul, and moreover that $${}_I{\mathbb {T}}$$ I T is universal among abelian $${\mathbb {C}}$$ C -linear tensor categories generated by two objects X , Y with fixed subobjects $$X'\hookrightarrow X$$ X ′ ↪ X , $$Y'\hookrightarrow Y$$ Y ′ ↪ Y and a pairing $$X\otimes Y\rightarrow {\mathbf{1 }}$$ X ⊗ Y → 1 where 1 is the monoidal unit. We conclude the paper by discussing the orthogonal and symplectic analogues of the categories $${\mathbb {T}}$$ T and $${}_I{\mathbb {T}}$$ I T . 
                        more » 
                        « less   
                    
                            
                            Vertex operator superalgebras and the 16-fold way
                        
                    
    
            Let V V be a vertex operator superalgebra with the natural order 2 automorphism σ \sigma . Under suitable conditions on V V , the σ \sigma -fixed subspace V 0 ¯ V_{\bar 0} is a vertex operator algebra and the V 0 ¯ V_{\bar 0} -module category C V 0 ¯ \mathcal {C}_{V_{\bar 0}} is a modular tensor category. In this paper, we prove that C V 0 ¯ \mathcal {C}_{V_{\bar 0}} is a fermionic modular tensor category and the Müger centralizer C V 0 ¯ 0 \mathcal {C}_{V_{\bar 0}}^0 of the fermion in C V 0 ¯ \mathcal {C}_{V_{\bar 0}} is generated by the irreducible V 0 ¯ V_{\bar 0} -submodules of the V V -modules. In particular, C V 0 ¯ 0 \mathcal {C}_{V_{\bar 0}}^0 is a super-modular tensor category and C V 0 ¯ \mathcal {C}_{V_{\bar 0}} is a minimal modular extension of C V 0 ¯ 0 \mathcal {C}_{V_{\bar 0}}^0 . We provide a construction of a vertex operator superalgebra V l V^l for each positive integer l l such that C ( V l ) 0 ¯ \mathcal {C}_{{(V^l)_{\bar 0}}} is a minimal modular extension of C V 0 ¯ 0 \mathcal {C}_{V_{\bar 0}}^0 . We prove that these modular tensor categories C ( V l ) 0 ¯ \mathcal {C}_{{(V^l)_{\bar 0}}} are uniquely determined, up to equivalence, by the congruence class of l l modulo 16. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1664418
- PAR ID:
- 10308955
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society
- Volume:
- 374
- Issue:
- 11
- ISSN:
- 0002-9947
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We consider the finite generation property for cohomology of a finite tensor category C \mathscr {C} , which requires that the self-extension algebra of the unit \operatorname {Ext}^\text {\tiny ∙ }_\mathscr {C}(\mathbf {1},\mathbf {1}) is a finitely generated algebra and that, for each object V V in C \mathscr {C} , the graded extension group \operatorname {Ext}^\text {\tiny ∙ }_\mathscr {C}(\mathbf {1},V) is a finitely generated module over the aforementioned algebra. We prove that this cohomological finiteness property is preserved under duality (with respect to exact module categories) and taking the Drinfeld center, under suitable restrictions on C \mathscr {C} . For example, the stated result holds when C \mathscr {C} is a braided tensor category of odd Frobenius-Perron dimension. By applying our general results, we obtain a number of new examples of finite tensor categories with finitely generated cohomology. In characteristic 0 0 , we show that dynamical quantum groups at roots of unity have finitely generated cohomology. We also provide a new class of examples in finite characteristic which are constructed via infinitesimal group schemes.more » « less
- 
            Abstract Using the invariant theory of arc spaces, we find minimal strong generating sets for certain cosets of affine vertex algebras inside free field algebras that are related to classical Howe duality. These results have several applications. First, for any vertex algebra $${{\mathcal {V}}}$$, we have a surjective homomorphism of differential algebras $$\mathbb {C}[J_{\infty }(X_{{{\mathcal {V}}}})] \rightarrow \text {gr}^{F}({{\mathcal {V}}})$$; equivalently, the singular support of $${{\mathcal {V}}}$$ is a closed subscheme of the arc space of the associated scheme $$X_{{{\mathcal {V}}}}$$. We give many new examples of classically free vertex algebras (i.e., this map is an isomorphism), including $$L_{k}({{\mathfrak {s}}}{{\mathfrak {p}}}_{2n})$$ for all positive integers $$n$$ and $$k$$. We also give new examples where the kernel of this map is nontrivial but is finitely generated as a differential ideal. Next, we prove a coset realization of the subregular $${{\mathcal {W}}}$$-algebra of $${{\mathfrak {s}}}{{\mathfrak {l}}}_{n}$$ at a critical level that was previously conjectured by Creutzig, Gao, and the 1st author. Finally, we give some new level-rank dualities involving affine vertex superalgebras.more » « less
- 
            null (Ed.)Abstract For a braided fusion category $$\mathcal{V}$$, a $$\mathcal{V}$$-fusion category is a fusion category $$\mathcal{C}$$ equipped with a braided monoidal functor $$\mathcal{F}:\mathcal{V} \to Z(\mathcal{C})$$. Given a fixed $$\mathcal{V}$$-fusion category $$(\mathcal{C}, \mathcal{F})$$ and a fixed $$G$$-graded extension $$\mathcal{C}\subseteq \mathcal{D}$$ as an ordinary fusion category, we characterize the enrichments $$\widetilde{\mathcal{F}}:\mathcal{V} \to Z(\mathcal{D})$$ of $$\mathcal{D}$$ that are compatible with the enrichment of $$\mathcal{C}$$. We show that G-crossed extensions of a braided fusion category $$\mathcal{C}$$ are G-extensions of the canonical enrichment of $$\mathcal{C}$$ over itself. As an application, we parameterize the set of $$G$$-crossed braidings on a fixed $$G$$-graded fusion category in terms of certain subcategories of its center, extending Nikshych’s classification of the braidings on a fusion category.more » « less
- 
            null (Ed.)Abstract For each integer $$t$$ a tensor category $$\mathcal{V}_t$$ is constructed, such that exact tensor functors $$\mathcal{V}_t\rightarrow \mathcal{C}$$ classify dualizable $$t$$-dimensional objects in $$\mathcal{C}$$ not annihilated by any Schur functor. This means that $$\mathcal{V}_t$$ is the “abelian envelope” of the Deligne category $$\mathcal{D}_t=\operatorname{Rep}(GL_t)$$. Any tensor functor $$\operatorname{Rep}(GL_t)\longrightarrow \mathcal{C}$$ is proved to factor either through $$\mathcal{V}_t$$ or through one of the classical categories $$\operatorname{Rep}(GL(m|n))$$ with $m-n=t$. The universal property of $$\mathcal{V}_t$$ implies that it is equivalent to the categories $$\operatorname{Rep}_{\mathcal{D}_{t_1}\otimes \mathcal{D}_{t_2}}(GL(X),\epsilon )$$, ($$t=t_1+t_2$$, $$t_1$$ not an integer) suggested by Deligne as candidates for the role of abelian envelope.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    