Triticum mosaic virus (TriMV), the type species of the genus Poacevirus in the family Potyviridae, is an economically important wheat curl mite-transmitted wheat-infecting virus in the Great Plains region of the USA. In this study, the functional genomics of helper component-proteinase (HC-Pro) encoded by TriMV was examined using a reverse genetics approach. TriMV with complete deletion of HC-Pro cistron elicited systemic infection in wheat, indicating that HC-Pro cistron is dispensable for TriMV systemic infection. However, TriMV lacking HCPro caused delayed systemic infection with mild symptoms that resulted in little or no stunting of plants with a significant reduction in the accumulation of genomic RNA copies and coat protein (CP). Sequential deletion mutagenesis from the 5′ end of HC-Pro cistron in the TriMV genome revealed that deletions within amino acids 3 to 25, except for amino acids 3 and 4, elicited mild symptoms with reduced accumulation of genomic RNA and CP. Surprisingly, TriMV with deletion of amino acids 3 to 50 or 3 to 125 in HC-Pro elicited severe symptoms with a substantial increase in genomic RNA copies but a drastic reduction in CP accumulation. Additionally, TriMV with heterologous HC-Pro from other potyvirids produced symptom phenotype and genomic RNA accumulation similar to that of TriMV without HC-Pro, suggesting that HC-Pros of other potyvirids were not effective in complementing TriMV in wheat. Our data indicate that HC-Pro is expendable for replication of TriMV but is required for efficient viral genomic RNA amplification and symptom development. The availability of TriMV with various deletions in the HC-Pro cistron will facilitate the examination of the requirement of HC-Pro for wheat curl mite transmission. 
                        more » 
                        « less   
                    
                            
                            Differential Synergistic Interactions among Four Different Wheat-infecting Viruses
                        
                    
    
            Field-grown wheat (Triticum aestivum L.) plants can be co-infected by multiple viruses, including wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), brome mosaic virus (BMV), and barley stripe mosaic virus (BSMV). These viruses belong to four different genera in three different families and are, hence, genetically divergent. However, the impact of potential co-infections with two, three, or all four of them on the viruses themselves, as well as the wheat host, has yet to be examined. This study examined bi-, tri-, and quadripartite interactions among these viruses in wheat for disease development and accumulation of viral genomic RNAs, in comparison with single virus infections. Co-infection of wheat by BMV and BSMV resulted in BMV-like symptoms with a drastic reduction in BSMV genomic RNA copies and coat protein accumulation, suggesting an antagonism-like effect exerted by BMV toward BSMV. However, co-infection of either BMV or BSMV with WSMV or TriMV led to more severe disease than singly infected wheat, but with a decrease or no significant change in the titers of interacting viruses in the presence of BMV or BSMV, respectively. These results were in stark contrast with exacerbated disease phenotype accompanied with enhanced virus titers caused by WSMV and TriMV co-infection. Co-infection of wheat by WSMV, TriMV, and BMV or BSMV resulted in enhanced synergistic disease accompanied with increased accumulation of TriMV and BMV but not WSMV or BSMV. Quadripartite interactions in co-infected wheat by all four viruses resulted in very severe disease synergism, leading to the death of most infected plants, but paradoxically, a drastic reduction in BSMV titer. Our results indicate that interactions among different viruses infecting the same plant host are more complex than previously thought, do not always entail increases in virus titers, and likely involve multiple mechanisms. These findings lay the foundation for additional mechanistic dissections of synergistic interactions among unrelated plant viruses. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1758912
- PAR ID:
- 10308969
- Date Published:
- Journal Name:
- Frontiers in microbiology
- ISSN:
- 1664-302X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Blanco-Melo, Daniel (Ed.)Coronavirus genomes have evolutionary histories shaped extensively by recombination. Yet, how often recombination occurs at a cellular level, or the factors that regulate recombination rates, are poorly understood. Utilizing experimental co-infections with pairs of genetically distinct coronaviruses, we found that recombination is both frequent and rare during coinfection. Recombination occurred in every instance of co-infection yet resulted in relatively few recombinant RNAs. By integrating a discrete-time Susceptible-Infected-Removed (SIR) model, we found that rates of recombination are determined primarily by rates of cellular co-infection, rather than other possible barriers such as RNA compartmentalization. By staggering the order and timing of infection with each virus we also found that rates of co-infection are themselves heavily influenced by genetic and ecological mechanisms, including superinfection exclusion and the relative fitness of competing viruses. Our study highlights recombination as a potent yet regulated force: frequent enough to ensure a steady influx of genetic variation but also infrequent enough to maintain genomic integrity. As recombination is thought to be an important driver of host-switching and disease emergence, our study provides new insights into the factors that regulate coronavirus recombination and evolution more broadly.more » « less
- 
            Emerging plant viruses are one of the greatest problems facing crop production worldwide, and have severe consequences in the developing world where subsistence farming is a major source of food production, and knowledge and resources for management are limited. In Africa, evolution of two viral disease complexes, cassava mosaic begomoviruses (CMBs) (Geminiviridae) and cassava brown streak viruses (CBSVs) (Potyviridae), have resulted in severe pandemics that continue to spread and threaten cassava production. Identification of genetically diverse and rapidly evolving CMBs and CBSVs, extensive genetic variation in the vector, Bemisia tabaci (Hemiptera: Aleyrodidae), and numerous secondary endosymbiont profiles that influence vector phenotypes suggest that complex local and regional vector-virus plant-environment interactions may be driving the evolution and epidemiology of these viruses.more » « less
- 
            Understanding the pathways by which simple RNA viruses self-assemble from their coat proteins and RNA is of practical and fundamental interest. Although RNA–protein interactions are thought to play a critical role in the assembly, our understanding of their effects is limited because the assembly process is difficult to observe directly. We address this problem by using interferometric scattering microscopy, a sensitive optical technique with high dynamic range, to follow the in vitro assembly kinetics of more than 500 individual particles of brome mosaic virus (BMV)—for which RNA–protein interactions can be controlled by varying the ionic strength of the buffer. We find that when RNA–protein interactions are weak, BMV assembles by a nucleation-and-growth pathway in which a small cluster of RNA-bound proteins must exceed a critical size before additional proteins can bind. As the strength of RNA–protein interactions increases, the nucleation time becomes shorter and more narrowly distributed, but the time to grow a capsid after nucleation is largely unaffected. These results suggest that the nucleation rate is controlled by RNA–protein interactions, while the growth process is driven less by RNA–protein interactions and more by protein–protein interactions and intraprotein forces. The nucleated pathway observed with the plant virus BMV is strikingly similar to that previously observed with bacteriophage MS2, a phylogenetically distinct virus with a different host kingdom. These results raise the possibility that nucleated assembly pathways might be common to other RNA viruses.more » « less
- 
            The timing and magnitude of the immune response (i.e., the immunodynamics) associated with the early innate immune response to viral infection display distinct trends across influenza A virus subtypes in vivo. Evidence shows that the timing of the type-I interferon response and the overall magnitude of immune cell infiltration are both correlated with more severe outcomes. However, the mechanisms driving the distinct immunodynamics between infections of different virus strains (strain-specific immunodynamics) remain unclear. Here, computational modeling and strain-specific immunologic data are used to identify the immune interactions that differ in mice infected with low-pathogenic H1N1 or high-pathogenic H5N1 influenza viruses. Computational exploration of free parameters between strains suggests that the production rate of interferon is the major driver of strain-specific immune responses observed in vivo, and points towards the relationship between the viral load and lung epithelial interferon production as the main source of variance between infection outcomes. A greater understanding of the contributors to strain-specific immunodynamics can be utilized in future efforts aimed at treatment development to improve clinical outcomes of high-pathogenic viral strains.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    