skip to main content


Search for: All records

Award ID contains: 1758912

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Soybean gene functions cannot be easily interrogated through transgenic disruption (knock-out) of genes-of-interest, or transgenic overexpression of proteins-of-interest, because soybean transformation is time-consuming and technically challenging. An attractive alternative is to administer transient gene silencing or overexpression with a plant virus-based vector. However, existing virus-induced gene silencing (VIGS) and/or overexpression vectors suitable for soybean have various drawbacks that hinder their widespread adoption.

    Results

    We describe the development of a new vector based on cowpea severe mosaic virus (CPSMV), a plus-strand RNA virus with its genome divided into two RNA segments, RNA1 and RNA2. This vector, designated FZ, incorporates a cloning site in the RNA2 cDNA, permitting insertion of nonviral sequences. When paired with an optimized RNA1 construct, FZ readily infects bothNicotiana benthamianaand soybean. As a result, FZ constructs destined for soybean can be first delivered toN. benthamianain order to propagate the modified viruses to high titers. FZ-based silencing constructs induced robust silencing of phytoene desaturase genes inN. benthamiana, multiple soybean accessions, and cowpea. Meanwhile, FZ supported systemic expression of fluorescent proteins mNeonGreen and mCherry inN. benthamianaand soybean. Finally, FZ-mediated expression of the Arabidopsis transcription factor MYB75 causedN. benthamianato bear brown leaves and purple, twisted flowers, indicating that MYB75 retained the function of activating anthocyanin synthesis pathways in a different plant.

    Conclusions

    The new CPSMV-derived FZ vector provides a convenient and versatile soybean functional genomics tool that is expected to accelerate the characterization of soybean genes controlling crucial productivity traits.

     
    more » « less
  2. Triticum mosaic virus (TriMV), the type species of the genus Poacevirus in the family Potyviridae, is an economically important wheat curl mite-transmitted wheat-infecting virus in the Great Plains region of the USA. In this study, the functional genomics of helper component-proteinase (HC-Pro) encoded by TriMV was examined using a reverse genetics approach. TriMV with complete deletion of HC-Pro cistron elicited systemic infection in wheat, indicating that HC-Pro cistron is dispensable for TriMV systemic infection. However, TriMV lacking HCPro caused delayed systemic infection with mild symptoms that resulted in little or no stunting of plants with a significant reduction in the accumulation of genomic RNA copies and coat protein (CP). Sequential deletion mutagenesis from the 5′ end of HC-Pro cistron in the TriMV genome revealed that deletions within amino acids 3 to 25, except for amino acids 3 and 4, elicited mild symptoms with reduced accumulation of genomic RNA and CP. Surprisingly, TriMV with deletion of amino acids 3 to 50 or 3 to 125 in HC-Pro elicited severe symptoms with a substantial increase in genomic RNA copies but a drastic reduction in CP accumulation. Additionally, TriMV with heterologous HC-Pro from other potyvirids produced symptom phenotype and genomic RNA accumulation similar to that of TriMV without HC-Pro, suggesting that HC-Pros of other potyvirids were not effective in complementing TriMV in wheat. Our data indicate that HC-Pro is expendable for replication of TriMV but is required for efficient viral genomic RNA amplification and symptom development. The availability of TriMV with various deletions in the HC-Pro cistron will facilitate the examination of the requirement of HC-Pro for wheat curl mite transmission. 
    more » « less
    Free, publicly-accessible full text available November 30, 2024
  3. Pagán, Israel (Ed.)

    Viruses with single-stranded, positive-sense (+) RNA genomes incur high numbers of errors during replication, thereby creating diversified genome populations from which new, better adapted viral variants can emerge. However, a definitive error rate is known for a relatively few (+) RNA plant viruses, due to challenges to account for perturbations caused by natural selection and/or experimental set-ups. To address these challenges, we developed a new approach that exclusively profiled errors in the (-)-strand replication intermediates of turnip crinkle virus (TCV), in singly infected cells. A series of controls and safeguards were devised to ensure errors inherent to the experimental process were accounted for. This approach permitted the estimation of a TCV error rate of 8.47 X 10−5substitution per nucleotide site per cell infection. Importantly, the characteristic error distribution pattern among the 50 copies of 2,363-base-pair cDNA fragments predicted that nearly all TCV (-) strands were products of one replication cycle per cell. Furthermore, some of the errors probably elevated error frequencies by lowering the fidelity of TCV RNA-dependent RNA polymerase, and/or permitting occasional re-replication of progeny genomes. In summary, by profiling errors in TCV (-)-strand intermediates incurred during replication in single cells, this study provided strong support for a stamping machine mode of replication employed by a (+) RNA virus.

     
    more » « less
    Free, publicly-accessible full text available August 14, 2024
  4. Superinfection exclusion (SIE) is an antagonistic interaction between identical or closely related viruses in host cells. Previous studies by us and others led to the hypothesis that SIE was elicited by one or more proteins encoded in the genomes of primary viruses. Here, we tested this hypothesis using Turnip mosaic virus (TuMV), a member of the genus Potyvirus of the family Potyviridae, with significant economic consequences. To this end, individual TuMV-encoded proteins were transiently expressed in the cells of Nicotiana benthamiana leaves, followed by challenging them with a modified TuMV expressing the green fluorescent protein (TuMV-GFP). Three days after TuMV-GFP delivery, these cells were examined for the replication-dependent expression of GFP. Cells expressing TuMV P1, HC-Pro, 6K1, CI, 6K2, NIa-VPg, NIb, or CP proteins permitted an efficient expression of GFP, suggesting that these proteins failed to block the replication of a superinfecting TuMV-GFP. By contrast, N. benthamiana cells expressing TuMV P3 or NIa-Pro did not express visible GFP fluorescence, suggesting that both of them could elicit potent SIE against TuMV-GFP. The SIE elicitor activity of P3 and NIa-Pro was further confirmed by their heterologous expression from a different potyvirus, potato virus A (PVA). Plants systemically infected with PVA variants expressing TuMV P3 or NIa-Pro blocked subsequent infection by TuMV-GFP. A +1-frameshift mutation in P3 and NIa-Pro cistrons facilitated superinfection by TuMV-GFP, suggesting that the P3 and NIa-Pro proteins, but not the RNA, are involved in SIE activity. Additionally, deletion mutagenesis identified P3 amino acids 3 to 200 of 352 and NIa-Pro amino acids 3 to 40 and 181 to 242 of 242 as essential for SIE elicitation. Collectively, our study demonstrates that TuMV encodes two spatially separated proteins that act independently to exert SIE on superinfecting TuMV. These results lay the foundation for further mechanistic interrogations of SIE in this virus.

     
    more » « less
  5. Wang, Aiming (Ed.)

    Viruses are constantly subject to natural selection to enrich beneficial mutations and weed out deleterious ones. However, it remains unresolved as to how the phenotypic gains or losses brought about by these mutations cause the viral genomes carrying the very mutations to become more or less numerous. Previous investigations by us and others suggest that viruses with plus strand (+) RNA genomes may compel such selection by bottlenecking the replicating genome copies in each cell to low single digits. Nevertheless, it is unclear if similarly stringent reproductive bottlenecks also occur in cells invaded by DNA viruses. Here we investigated whether tomato yellow leaf curl virus (TYLCV), a small virus with a single-stranded DNA genome, underwent population bottlenecking in cells of its host plants. We engineered a TYLCV genome to produce two replicons that express green fluorescent protein and mCherry, respectively, in a replication-dependent manner. We found that among the cells entered by both replicons, less than 65% replicated both, whereas at least 35% replicated either of them alone. Further probability computation concluded that replication in an average cell was unlikely to have been initiated with more than three replicon genome copies. Furthermore, sequential inoculations unveiled strong mutual exclusions of these two replicons at the intracellular level. In conclusion, the intracellular population of the small DNA virus TYLCV is actively bottlenecked, and such bottlenecking may be a virus-encoded, evolutionarily conserved trait that assures timely selection of new mutations emerging through error-prone replication.

     
    more » « less
  6. Natural selection acts on cellular organisms by ensuring the genes responsible for an advantageous phenotype consistently reap the phenotypic advantage. This is possible because reproductive cells of these organisms are almost always haploid, separating the beneficial gene from its rival allele at every generation. How natural selection acts on plus-strand RNA viruses is unclear because these viruses frequently load host cells with numerous genome copies and replicate thousands of progeny genomes in each cell. Recent studies suggest that these viruses encode the Bottleneck, Isolate, Amplify, Select (BIAS) mechanism that blocks all but a few viral genome copies from replication, thus creating the environment in which the bottleneck-escaping viral genome copies are isolated from each other, allowing natural selection to reward beneficial mutations and purge lethal errors. This BIAS mechanism also blocks the genomes of highly homologous superinfecting viruses, thus explaining cellular-level superinfection exclusion. 
    more » « less
  7. Field-grown wheat (Triticum aestivum L.) plants can be co-infected by multiple viruses, including wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), brome mosaic virus (BMV), and barley stripe mosaic virus (BSMV). These viruses belong to four different genera in three different families and are, hence, genetically divergent. However, the impact of potential co-infections with two, three, or all four of them on the viruses themselves, as well as the wheat host, has yet to be examined. This study examined bi-, tri-, and quadripartite interactions among these viruses in wheat for disease development and accumulation of viral genomic RNAs, in comparison with single virus infections. Co-infection of wheat by BMV and BSMV resulted in BMV-like symptoms with a drastic reduction in BSMV genomic RNA copies and coat protein accumulation, suggesting an antagonism-like effect exerted by BMV toward BSMV. However, co-infection of either BMV or BSMV with WSMV or TriMV led to more severe disease than singly infected wheat, but with a decrease or no significant change in the titers of interacting viruses in the presence of BMV or BSMV, respectively. These results were in stark contrast with exacerbated disease phenotype accompanied with enhanced virus titers caused by WSMV and TriMV co-infection. Co-infection of wheat by WSMV, TriMV, and BMV or BSMV resulted in enhanced synergistic disease accompanied with increased accumulation of TriMV and BMV but not WSMV or BSMV. Quadripartite interactions in co-infected wheat by all four viruses resulted in very severe disease synergism, leading to the death of most infected plants, but paradoxically, a drastic reduction in BSMV titer. Our results indicate that interactions among different viruses infecting the same plant host are more complex than previously thought, do not always entail increases in virus titers, and likely involve multiple mechanisms. These findings lay the foundation for additional mechanistic dissections of synergistic interactions among unrelated plant viruses. 
    more » « less
  8. Simon, Anne E. (Ed.)
    ABSTRACT Long noncoding RNAs (lncRNAs) of virus origin accumulate in cells infected by many positive-strand (+) RNA viruses to bolster viral infectivity. Their biogenesis mostly utilizes exoribonucleases of host cells that degrade viral genomic or subgenomic RNAs in the 5′-to-3′ direction until being stalled by well-defined RNA structures. Here, we report a viral lncRNA that is produced by a novel replication-dependent mechanism. This lncRNA corresponds to the last 283 nucleotides of the turnip crinkle virus (TCV) genome and hence is designated tiny TCV subgenomic RNA (ttsgR). ttsgR accumulated to high levels in TCV-infected Nicotiana benthamiana cells when the TCV-encoded RNA-dependent RNA polymerase (RdRp), also known as p88, was overexpressed. Both (+) and (−) strand forms of ttsgR were produced in a manner dependent on the RdRp functionality. Strikingly, templates as short as ttsgR itself were sufficient to program ttsgR amplification, as long as the TCV-encoded replication proteins p28 and p88 were provided in trans . Consistent with its replicational origin, ttsgR accumulation required a 5′ terminal carmovirus consensus sequence (CCS), a sequence motif shared by genomic and subgenomic RNAs of many viruses phylogenetically related to TCV. More importantly, introducing a new CCS motif elsewhere in the TCV genome was alone sufficient to cause the emergence of another lncRNA. Finally, abolishing ttsgR by mutating its 5′ CCS gave rise to a TCV mutant that failed to compete with wild-type TCV in Arabidopsis . Collectively, our results unveil a replication-dependent mechanism for the biogenesis of viral lncRNAs, thus suggesting that multiple mechanisms, individually or in combination, may be responsible for viral lncRNA production. IMPORTANCE Many positive-strand (+) RNA viruses produce long noncoding RNAs (lncRNAs) during the process of cellular infections and mobilize these lncRNAs to counteract antiviral defenses, as well as coordinate the translation of viral proteins. Most viral lncRNAs arise from 5′-to-3′ degradation of longer viral RNAs being stalled at stable secondary structures. Here, we report a viral lncRNA that is produced by the replication machinery of turnip crinkle virus (TCV). This lncRNA, designated ttsgR, shares the terminal characteristics with TCV genomic and subgenomic RNAs and overaccumulates in the presence of moderately overexpressed TCV RNA-dependent RNA polymerase (RdRp). Furthermore, templates that are of similar sizes as ttsgR are readily replicated by TCV replication proteins (p28 and RdRp) provided from nonviral sources. In summary, this study establishes an approach for uncovering low abundance viral lncRNAs, and characterizes a replicating TCV lncRNA. Similar investigations on human-pathogenic (+) RNA viruses could yield novel therapeutic targets. 
    more » « less
  9. Geminiviruses possess single-stranded, circular DNA genomes and control the transcription of their late genes, including BV1 of many bipartite begomoviruses, through transcriptional activation by the early expressing AC2 protein. DNA binding by AC2 is not sequence-specific; hence, the specificity of AC2 activation is thought to be conferred by plant transcription factors (TFs) recruited by AC2 in infected cells. However, the exact TFs AC2 recruits are not known for most viruses. Here, we report a systematic examination of the BV1 promoter (PBV1) of the mungbean yellow mosaic virus (MYMV) for conserved promoter motifs. We found that MYMV PBV1 contains three abscisic acid (ABA)-responsive elements (ABREs) within its first 70 nucleotides. Deleting these ABREs, or mutating them all via site-directed mutagenesis, abolished the capacity of PBV1 to respond to AC2-mediated transcriptional activation. Furthermore, ABRE and other related ABA-responsive elements were prevalent in more than a dozen Old World begomoviruses we inspected. Together, these findings suggest that ABA-responsive TFs may be recruited by AC2 to BV1 promoters of these viruses to confer specificity to AC2 activation. These observations are expected to guide the search for the actual TF(s), furthering our understanding of the mechanisms of AC2 action. 
    more » « less
  10. Abstract Many positive-sense RNA viruses, especially those infecting plants, are known to experience stringent, stochastic population bottlenecks inside the cells they invade, but exactly how and why these populations become bottlenecked are unclear. A model proposed ten years ago advocates that such bottlenecks are evolutionarily favored because they cause the isolation of individual viral variants in separate cells. Such isolation in turn allows the viral variants to manifest the phenotypic differences they encode. Recently published observations lend mechanistic support to this model and prompt us to refine the model with novel molecular details. The refined model, designated Bottleneck, Isolate, Amplify, Select (BIAS), postulates that these viruses impose population bottlenecks on themselves by encoding bottleneck-enforcing proteins (BNEPs) that function in a concentration-dependent manner. In cells simultaneously invaded by numerous virions of the same virus, BNEPs reach the bottleneck-ready concentration sufficiently early to arrest nearly all internalized viral genomes. As a result, very few (as few as one) viral genomes stochastically escape to initiate reproduction. Repetition of this process in successively infected cells isolates viral genomes with different mutations in separate cells. This isolation prevents mutant viruses encoding defective viral proteins from hitchhiking on sister genome-encoded products, leading to the swift purging of such mutants. Importantly, genome isolation also ensures viral genomes harboring beneficial mutations accrue the cognate benefit exclusively to themselves, leading to the fixation of such beneficial mutations. Further interrogation of the BIAS hypothesis promises to deepen our understanding of virus evolution and inspire new solutions to virus disease mitigation. 
    more » « less