Wildfires cause elevated air pollution that can be detrimental to human health. However, health impact assessments associated with emissions from wildfire events are subject to uncertainty arising from different sources. Here, we quantify and compare major uncertainties in mortality and morbidity outcomes of exposure to fine particulate matter (PM2.5) pollution estimated for a series of wildfires in the Southeastern U.S. We present an approach to compare uncertainty in estimated health impacts specifically due to two driving factors, wildfire‐related smoke PM2.5fields and variability in concentration‐response parameters from epidemiologic studies of ambient and smoke PM2.5. This analysis, focused on the 2016 Southeastern wildfires, suggests that emissions from these fires had public health consequences in North Carolina. Using several methods based on publicly available monitor data and atmospheric models to represent wildfire‐attributable PM2.5, we estimate impacts on several health outcomes and quantify associated uncertainty. Multiple concentration‐response parameters derived from studies of ambient and wildfire‐specific PM2.5are used to assess health‐related uncertainty. Results show large variability and uncertainty in wildfire impact estimates, with comparable uncertainties due to the smoke pollution fields and health response parameters for some outcomes, but substantially larger health‐related uncertainty for several outcomes. Consideration of these uncertainties can support efforts to improve estimates of wildfire impacts and inform fire‐related decision‐making.
- Award ID(s):
- 1715557
- PAR ID:
- 10308985
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 2
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Increasing fire activity and the associated degradation in air quality in the United States has been indirectly linked to human activity via climate change. In addition, direct attribution of fires to human activities may provide opportunities for near term smoke mitigation by focusing policy, management, and funding efforts on particular ignition sources. We analyze how fires associated with human ignitions (agricultural fires and human-initiated wildfires) impact fire particulate matter under 2.5
µ m (PM2.5) concentrations in the contiguous United States (CONUS) from 2003 to 2018. We find that these agricultural and human-initiated wildfires dominate fire PM2.5in both a high fire and human ignition year (2018) and low fire and human ignition year (2003). Smoke from these human levers also makes meaningful contributions to total PM2.5(∼5%–10% in 2003 and 2018). Across CONUS, these two human ignition processes account for more than 80% of the population-weighted exposure and premature deaths associated with fire PM2.5. These findings indicate that a large portion of the smoke exposure and impacts in CONUS are from fires ignited by human activities with large mitigation potential that could be the focus of future management choices and policymaking. -
Abstract Despite the occurrence of wildfires quadrupling over the past four decades, the health effects associated with wildfire smoke exposures during pregnancy remains unknown. Particulate matter less than 2.5
μ ms (PM2.5) is among the major pollutants emitted in wildfire smoke. Previous studies found PM2.5associated with lower birthweight, however, the relationship between wildfire-specific PM2.5and birthweight is uncertain. Our study of 7923 singleton births in San Francisco between January 1, 2017 and March 12, 2020 examines associations between wildfire smoke exposure during pregnancy and birthweight. We linked daily estimates of wildfire-specific PM2.5to maternal residence at the ZIP code level. We used linear and log-binomial regression to examine the relationship between wildfire smoke exposure by trimester and birthweight and adjusted for gestational age, maternal age, race/ethnicity, and educational attainment. We stratified by infant sex to examine potential effect modification. Exposure to wildfire-specific PM2.5during the second trimester of pregnancy was positively associated with increased risk of large for gestational age (OR = 1.13; 95% CI: 1.03, 1.24), as was the number of days of wildfire-specific PM2.5above 5μ g m−3in the second trimester (OR = 1.03; 95% CI: 1.01, 1.06). We found consistent results with wildfire smoke exposure in the second trimester and increased continuous birthweight-for-gestational agez -score. Differences by infant sex were not consistent. Counter to our hypothesis, results suggest that wildfire smoke exposures are associated with increased risk for higher birthweight. We observed strongest associations during the second trimester. These investigations should be expanded to other populations exposed to wildfire smoke and aim to identify vulnerable communities. Additional research is needed to clarify the biological mechanisms in this relationship between wildfire smoke exposure and adverse birth outcomes. -
Abstract Wildfire frequency has increased in the Western US over recent decades, driven by climate change and a legacy of forest management practices. Consequently, human structures, health, and life are increasingly at risk due to wildfires. Furthermore, wildfire smoke presents a growing hazard for regional and national air quality. In response, many scientific tools have been developed to study and forecast wildfire behavior, or test interventions that may mitigate risk. In this study, we present a retrospective analysis of 1 month of the 2020 Northern California wildfire season, when many wildfires with varying environments and behavior impacted regional air quality. We simulated this period using a coupled numerical weather prediction model with online atmospheric chemistry, and compare two approaches to representing smoke emissions: an online fire spread model driven by remotely sensed fire arrival times and a biomass burning emissions inventory. First, we quantify the differences in smoke emissions and timing of fire activity, and characterize the subsequent impact on estimates of smoke emissions. Next, we compare the simulated smoke to surface observations and remotely sensed smoke; we find that despite differences in the simulated smoke surface concentrations, the two models achieve similar levels of accuracy. We present a detailed comparison between the performance and relative strengths of both approaches, and discuss potential refinements that could further improve future simulations of wildfire smoke. Finally, we characterize the interactions between smoke and meteorology during this event, and discuss the implications that increases in regional smoke may have on future meteorological conditions.
-
Abstract The increasing frequency and severity of wildfires due to climate change pose health risks to migrant farm workers laboring in wildfire‐prone regions. This study focuses on Sonoma County, California, investigating the effectiveness of air monitoring and safety protections for farmworkers. The analysis employs AirNow and PurpleAir PM2.5data acquired during the 2020 wildfire season, comparing spatial variability in air pollution. Results show significant differences between the single Sonoma County AirNow station data and the PurpleAir data in the regions directly impacted by wildfire smoke. Three distinct wildfire pollution episodes with elevated PM2.5levels are identified to examine the regional variations. This study also examines the system used to exempt farmworkers from wildfire mandatory evacuation orders, finding incomplete information, ad hoc decision‐making, and scant enforcement. In response, we make policy recommendations that include stricter requirements for employers, real‐time air quality monitoring, post‐exposure health screenings, and hazard pay. Our findings underscore the need for significant consideration of localized air quality readings and the importance of equitable disaster policies for protecting the health of farmworkers (particularly those who are undocumented migrants) in the face of escalating wildfire risks.