skip to main content


Title: In the Line of Fire: Consequences of Human-Ignited Wildfires to Homes in the U.S. (1992-2015)
With climate-driven increases in wildfires in the western U.S., it is imperative to understand how the risk to homes is also changing nationwide. Here, we quantify the number of homes threatened, suppression costs, and ignition sources for 1.6 million wildfires in the United States (U.S.; 1992–2015). Human-caused wildfires accounted for 97% of the residential homes threatened (within 1 km of a wildfire) and nearly a third of suppression costs. This study illustrates how the wildland-urban interface (WUI), which accounts for only a small portion of U.S. land area (10%), acts as a major source of fires, almost exclusively human-started. Cumulatively (1992–2015), just over one million homes were within human-caused wildfire perimeters in the WUI, where communities are built within flammable vegetation. An additional 58.8 million homes were within one kilometer across the 24-year record. On an annual basis in the WUI (1999–2014), an average of 2.5 million homes (2.2–2.8 million, 95% confidence interval) were threatened by human-started wildfires (within the perimeter and up to 1-km away). The number of residential homes in the WUI grew by 32 million from 1990–2015. The convergence of warmer, drier conditions and greater development into flammable landscapes is leaving many communities vulnerable to human-caused wildfires. These areas are a high priority for policy and management efforts that aim to reduce human ignitions and promote resilience to future fires, particularly as the number of residential homes in the WUI grew across this record and are expected to continue to grow in coming years.  more » « less
Award ID(s):
1924670
NSF-PAR ID:
10290569
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Fire
Volume:
3
Issue:
3
ISSN:
2421-2555
Page Range / eLocation ID:
50
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Past studies reported a drastic growth in the wildland–urban interface (WUI), the location where man‐made structures meet or overlap wildland vegetation. Fighting fire is difficult in the WUI due to the combination of wildland and structural fuels, and therefore, WUI areas are characterized by frequent damage and loss of structures from wildfires. Recent wildland fire policy has targeted fire prevention, evacuation planning, fuel treatment, and home hardening in WUI areas. Therefore, it is important to understand the occurrence of wildfire events relative to the location of the WUI. In this work, we have reported the occurrences of wildfires with respect to the WUI and quantified how much of the WUI is on complex topography in California, which intensifies fire behavior and complicates fire suppression. We have additionally analyzed the relative importance of WUI‐related parameters, such as housing density, vegetation density, and distance to wildfires, as well as topographic factors, such as slope, elevation, aspect, and surface roughness, on the occurrence of large and small wildfires and the burned area of large wildfires near the WUI. We found that a very small percentage of wildfire ignition points and large wildfire‐burned areas (>400 ha or 1000 acres) were located in the WUI areas. A small percentage of large wildfires were encountered in WUI (3%), and the WUI area accounted for only 4% of the area burned, which increased to 5% and 56%, respectively, outside WUI (5‐km buffer from WUI). Similarly, 66% of fires ignited outside WUI, whereas only 3.6% ignited within WUI. Results from this study have implications for fuel management and infrastructure hardening, as well as for fire suppression and community response.

     
    more » « less
  2. Viegas, Domingos Xavier (Ed.)
    During the summer of 2015, a number of wildfires fires burned across northern California, which produced significant smoke across the region. Smoke from these wildfires hindered fire-fighting efforts by delaying helicopter operations and exposed communities to high concentrations of atmospheric pollutants. Nighttime inversions are common across the western U.S. and usually mix out during the early afternoon as a result of convective mixing from daytime heating. However, atmospheric conditions in valleys adjacent to the aforementioned wildfires remained stable throughout the afternoon. It is hypothesized that the smoke from nearby wildfires enhanced atmospheric stability due to surface cooling caused by reduced incoming solar radiation, and possibly by warming aloft due to absorption of the incoming solar radiation in the smoke layer. At the same time, mid-level heating from the wildfire could have increased atmospheric stability and extended the duration of the inversion. In this study, we utilize the WRF-SFIRE-CHEM modeling framework, which couples an atmospheric, chemical, and fire spread model in an effort the model the impacts of smoke on local inversions and to improve the physical understanding behind these smoke-induced inversion episodes. This modeling framework was used to simulate the Route and South Complex fires between August 10 – August 26th, 2015. Preliminary results indicate that wildfire smoke may have significantly reduced incoming solar radiation, leading to local surface cooling by up to 2-3 degrees. Direct heating from the fire itself does not significantly enhance atmospheric stability. However, mid-level warming was observed in the smoke layer suggesting that absorption in this layer may have enhanced the inversion. This study suggests the including the fire-smoke- atmosphere feedbacks in a coupled modeling framework such as WRF-SFIRE-CHEM may help in capturing the impacts of wildfire smoke on near-surface stability and local inversions. 
    more » « less
  3. The impacts of wildfires along the wildland urban interface (WUI) on atmospheric particulate concentrations and composition are an understudied source of air pollution exposure. To assess the residual impacts of the 2021 Marshall Fire (Colorado), a wildfire that predominantly burned homes and other human-made materials, on homes within the fire perimeter that escaped the fire, we performed a combination of fine particulate matter (PM2.5) filter sampling and chemical analysis, indoor dust collection and chemical analysis, community scale PurpleAir PM2.5 analysis, and indoor particle number concentration measurements. Following the fire, the chemical speciation of dust collected in smoke-affected homes in the burned zone showed elevated concentrations of the biomass burning marker levoglucosan (medianlevo = 4147 ng g−1), EPA priority toxic polycyclic aromatic hydrocarbons (median Σ16PAH = 1859.3 ng g−1), and metals (median Σ20Metals = 34.6 mg g−1) when compared to samples collected in homes outside of the burn zone 6 months after the fire. As indoor dust particles are often resuspended and can become airborne, the enhanced concentration of hazardous metals and organics within dust samples may pose a threat to human health. Indoor airborne particulate organic carbon (median = 1.91 μg m−3), particulate elemental carbon (median = .02 μg m−3), and quantified semi-volatile organic species in PM2.5 were found in concentrations comparable to ambient air in urban areas across the USA. Particle number and size distribution analysis at a heavily instrumented supersite home located immediately next to the burned area showed indoor particulates in low concentrations (below 10 μg m−3) across various sizes of PM (12 nm–20 μm), but were elevated by resuspension from human activity, including cleaning. 
    more » « less
  4. Each year, wildfires ravage the western U.S. and change the lives of millions of inhabitants. Situated in southern California, coastal Santa Barbara has witnessed devastating wildfires in the past decade, with nearly all ignitions started by humans. Therefore, estimating the risk imposed by unplanned ignitions in this fire-prone region will further increase resilience toward wildfires. Currently, a fire-risk map does not exist in this region. The main objective of this study is to provide a spatial analysis of regions at high risk of fast wildfire spread, particularly in the first two hours, considering varying scenarios of ignition locations and atmospheric conditions. To achieve this goal, multiple wildfire simulations were conducted using the FARSITE fire spread model with three ignition modeling methods and three wind scenarios. The first ignition method considers ignitions randomly distributed in 500 m buffers around previously observed ignition sites. Since these ignitions are mainly clustered around roads and trails, the second method considers a 50 m buffer around this built infrastructure, with ignition points randomly sampled from within this buffer. The third method assumes a Euclidean distance decay of ignition probability around roads and trails up to 1000 m, where the probability of selection linearly decreases further from the transportation paths. The ignition modeling methods were then employed in wildfire simulations with varying wind scenarios representing the climatological wind pattern and strong, downslope wind events. A large number of modeled ignitions were located near the major-exit highway running north–south (HWY 154), resulting in more simulated wildfires burning in that region. This could impact evacuation route planning and resource allocation under climatological wind conditions. The simulated fire areas were smaller, and the wildfires did not spread far from the ignition locations. In contrast, wildfires ignited during strong, northerly winds quickly spread into the wildland–urban interface (WUI) toward suburban and urban areas.

     
    more » « less
  5. Abstract

    Downslope wind‐driven fires have resulted in many of the wildfire disasters in the western United States and represent a unique hazard to infrastructure and human life. We analyze the co‐occurrence of wildfires and downslope winds across the western United States (US) during 1992–2020. Downslope wind‐driven fires accounted for 13.4% of the wildfires and 11.9% of the burned area in the western US yet accounted for the majority of local burned area in portions of southern California, central Washington, and the front range of the Rockies. These fires were predominantly ignited by humans, occurred closer to population centers, and resulted in outsized impacts on human lives and infrastructure. Since 1999, downslope wind‐driven fires have accounted for 60.1% of structures and 52.4% of human lives lost in wildfires in the western US. Downslope wind‐driven fires occurred under anomalously dry fuels and exhibited a seasonality distinct from other fires—occurring primarily in the spring and fall. Over 1992–2020, we document a 25% increase in the annual number of downslope wind‐driven fires and a 140% increase in their respective annual burned area, which partially reflects trends toward drier fuels. These results advance our understanding of the importance of downslope winds in driving disastrous wildfires that threaten populated regions adjacent to mountain ranges in the western US. The unique characteristics of downslope wind‐driven fires require increased fire prevention and adaptation strategies to minimize losses and incorporation of changing human‐ignitions, fuel availability and dryness, and downslope wind occurrence to elucidate future fire risk.

     
    more » « less