skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cyclic Sulfenyl Thiocarbamates Release Carbonyl Sulfide and Hydrogen Sulfide Independently in Thiol-Promoted Pathways
Award ID(s):
1625529
PAR ID:
10309010
Author(s) / Creator(s):
 ;  ;  
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
141
Issue:
34
ISSN:
0002-7863
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The oxidation of carbonyl sulfide (OCS) is the primary, continuous source of stratospheric sulfate aerosol particles, which can scatter shortwave radiation and catalyze heterogeneous reactions in the stratosphere. While it has been estimated that the oxidation of dimethyl sulfide (DMS), emitted from the surface ocean accounts for 8%–20% of the global OCS source, there is no existing DMS oxidation mechanism relevant to the marine atmosphere that is consistent with an OCS source of this magnitude. We describe new laboratory measurements and theoretical analyses of DMS oxidation that provide a mechanistic description for OCS production from hydroperoxymethyl thioformate, a ubiquitous, soluble DMS oxidation product. We incorporate this chemical mechanism into a global chemical transport model, showing that OCS production from DMS is a factor of 3 smaller than current estimates, displays a maximum in the tropics consistent with field observations and is sensitive to multiphase cloud chemistry. 
    more » « less
  2. High-purity niningerite (MgS) was synthesized by BenchChem under vacuum conditions for use in laboratory simulations of solar-ion space weathering of sulfide minerals that are expected to be present on the surface of Mercury. MgS was initially characterized via x-ray photoelectron spectroscopy prior to investigations into the preferential loss of near-surface sulfur in niningerite with 2 keV H2+ irradiation. Survey and high-resolution (Mg 1s, Mg 2p, S 2p) x-ray photoelectron spectra of as-received magnesium sulfide powder (99.9%) are presented, including surface contaminants that originate from exposure to atmosphere (C 1s, O 1s). Minor impurities derived from sample synthesis (Al 2s, Al 2p) and packaging or processing (F 1s) are noted in the survey spectrum. 
    more » « less
  3. Abstract Permafrost degradation is altering biogeochemical processes throughout the Arctic. Thaw‐induced changes in organic matter transformations and mineral weathering reactions are impacting fluxes of inorganic carbon (IC) and alkalinity (ALK) in Arctic rivers. However, the net impact of these changing fluxes on the concentration of carbon dioxide in the atmosphere (pCO2) is relatively unconstrained. Resolving this uncertainty is important as thaw‐driven changes in the fluxes of IC and ALK could produce feedbacks in the global carbon cycle. Enhanced production of sulfuric acid through sulfide oxidation is particularly poorly quantified despite its potential to remove ALK from the ocean‐atmosphere system and increasepCO2, producing a positive feedback leading to more warming and permafrost degradation. In this work, we quantified weathering in the Koyukuk River, a major tributary of the Yukon River draining discontinuous permafrost in central Alaska, based on water and sediment samples collected near the village of Huslia in summer 2018. Using measurements of major ion abundances and sulfate () sulfur (34S/32S) and oxygen (18O/16O) isotope ratios, we employed the MEANDIR inversion model to quantify the relative importance of a suite of weathering processes and their net impact onpCO2. Calculations found that approximately 80% of in mainstem samples derived from sulfide oxidation with the remainder from evaporite dissolution. Moreover,34S/32S ratios,13C/12C ratios of dissolved IC, and sulfur X‐ray absorption spectra of mainstem, secondary channel, and floodplain pore fluid and sediment samples revealed modest degrees of microbial sulfate reduction within the floodplain. Weathering fluxes of ALK and IC result in lower values ofpCO2over timescales shorter than carbonate compensation (∼104 yr) and, for mainstem samples, higher values ofpCO2over timescales longer than carbonate compensation but shorter than the residence time of marine (∼107 yr). Furthermore, the absolute concentrations of and Mg2+in the Koyukuk River, as well as the ratios of and Mg2+to other dissolved weathering products, have increased over the past 50 years. Through analogy to similar trends in the Yukon River, we interpret these changes as reflecting enhanced sulfide oxidation due to ongoing exposure of previously frozen sediment and changes in the contributions of shallow and deep flow paths to the active channel. Overall, these findings confirm that sulfide oxidation is a substantial outcome of permafrost degradation and that the sulfur cycle responds to permafrost thaw with a timescale‐dependent feedback on warming. 
    more » « less