Frogs are ideal organisms for studying sex chromosome evolution because of their diversity in sex chromosome differentiation and sex-determination systems. We review 222 anuran frogs, spanning ~220 Myr of divergence, with characterized sex chromosomes, and discuss their evolution, phylogenetic distribution and transitions between homomorphic and heteromorphic states, as well as between sex-determination systems. Most (~75%) anurans have homomorphic sex chromosomes, with XY systems being three times more common than ZW systems. Most remaining anurans (~25%) have heteromorphic sex chromosomes, with XY and ZW systems almost equally represented. There are Y-autosome fusions in 11 species, and no W-/Z-/X-autosome fusions are known. The phylogeny represents at least 19 transitions between sex-determination systems and at least 16 cases of independent evolution of heteromorphic sex chromosomes from homomorphy, the likely ancestral state. Five lineages mostly have heteromorphic sex chromosomes, which might have evolved due to demographic and sexual selection attributes of those lineages. Males do not recombine over most of their genome, regardless of which is the heterogametic sex. Nevertheless, telomere-restricted recombination between ZW chromosomes has evolved at least once. More comparative genomic studies are needed to understand the evolutionary trajectories of sex chromosomes among frog lineages, especially in the ZW systems.
more »
« less
Origin of a Giant Sex Chromosome
Abstract Chromosome size and morphology vary within and among species, but little is known about the proximate or ultimate causes of these differences. Cichlid fish species in the tribe Oreochromini share an unusual giant chromosome that is ∼3 times longer than the other chromosomes. This giant chromosome functions as a sex chromosome in some of these species. We test two hypotheses of how this giant sex chromosome may have evolved. The first hypothesis proposes that it evolved by accumulating repetitive elements as recombination was reduced around a dominant sex determination locus, as suggested by canonical models of sex chromosome evolution. An alternative hypothesis is that the giant sex chromosome originated via the fusion of an autosome with a highly repetitive B chromosome, one of which carried a sex determination locus. We test these hypotheses using comparative analysis of chromosome-scale cichlid and teleost genomes. We find that the giant sex chromosome consists of three distinct regions based on patterns of recombination, gene and transposable element content, and synteny to the ancestral autosome. The WZ sex determination locus encompasses the last ∼105 Mb of the 134-Mb giant chromosome. The last 47 Mb of the giant chromosome shares no obvious homology to any ancestral chromosome. Comparisons across 69 teleost genomes reveal that the giant sex chromosome contains unparalleled amounts of endogenous retroviral elements, immunoglobulin genes, and long noncoding RNAs. The results favor the B chromosome fusion hypothesis for the origin of the giant chromosome.
more »
« less
- Award ID(s):
- 1830753
- PAR ID:
- 10309143
- Editor(s):
- Larracuente, Amanda
- Date Published:
- Journal Name:
- Molecular Biology and Evolution
- Volume:
- 38
- Issue:
- 4
- ISSN:
- 1537-1719
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fishman, Lila (Ed.)Abstract The XX/XY sex chromosome system is deeply conserved in therian mammals, as is the role of Sry in testis determination, giving the impression of stasis relative to other taxa. However, the long tradition of cytogenetic studies in mammals documents sex chromosome karyotypes that break this norm in myriad ways, ranging from fusions between sex chromosomes and autosomes to Y chromosome loss. Evolutionary conflict, in the form of sexual antagonism or meiotic drive, is the primary predicted driver of sex chromosome transformation and turnover. Yet conflict-based hypotheses are less considered in mammals, perhaps because of the perceived stability of the sex chromosome system. To address this gap, we catalog and characterize all described sex chromosome variants in mammals, test for family-specific rates of accumulation, and consider the role of conflict between the sexes or within the genome in the evolution of these systems. We identify 152 species with sex chromosomes that differ from the ancestral state and find evidence for different rates of ancestral to derived transitions among families. Sex chromosome-autosome fusions account for 79% of all variants whereas documented sex chromosome fissions are limited to three species. We propose that meiotic drive and drive suppression provide viable explanations for the evolution of many of these variant systems, particularly those involving autosomal fusions. We highlight taxa particularly worthy of further study and provide experimental predictions for testing the role of conflict and its alternatives in generating observed sex chromosome diversity.more » « less
-
Antagonistic selection has long been considered a major driver of the formation and expansion of sex chromosomes. For example, sexually antagonistic variation on an autosome can select for suppressed recombination between that autosome and the sex chromosome, leading to a neo-sex chromosome. Autosomal supergenes, chromosomal regions containing tightly linked variants affecting the same complex trait, share similarities with sex chromosomes, raising the possibility that sex chromosome evolution models can explain the evolution of genome structure and recombination in other contexts. We tested this premise in a Formica ant species wherein we identified four supergene haplotypes on chromosome 3 underlying colony social organization and sex ratio. We discovered a novel rearranged supergene variant (9r) on chromosome 9 underlying queen miniaturization. The 9r is in strong linkage disequilibrium with one chromosome 3 haplotype (P2) found in multi-queen (polygyne) colonies. We suggest that queen miniaturization is strongly disfavored in the single queen (monogyne) background, and thus socially antagonistic. As such, divergent selection experienced by ants living in alternative social ‘environments’ (monogyne and polygyne) may have contributed to the emergence of a genetic polymorphism on chromosome 9 and associated queen-size dimorphism. Consequently, an ancestral polygyne-associated haplotype may have expanded to include the polymorphism on chromosome 9, resulting in a larger region of suppressed recombination spanning two chromosomes. This process is analogous to the formation of neo-sex chromosomes and consistent with models of expanding regions of suppressed recombination. We propose that miniaturized queens, 16-20% smaller than queens without 9r, could be incipient intraspecific social parasites.more » « less
-
The relatively young and repeated evolutionary origins of dioecy (separate sexes) in flowering plants enable investigation of molecular dynamics occurring at the earliest stages of sex chromosome evolution. With two independently young origins of dioecy in the genus,Asparagusis a model taxon for studying genetic sex-determination and sex chromosome evolution. Dioecy first evolved inAsparagus~3-4 million years ago (Ma) in the ancestor of a now widespread Eurasian clade that includes garden asparagus (Asparagus officinalis), while the second origin occurred in a smaller, geographically restricted, Mediterranean Basin clade includingAsparagus horridus. The XY sex chromosomes and sex-determination genes in garden asparagus have been well characterized, but the genetics underlying dioecy in the Mediterranean Basin clade are unknown. We generated new haplotype-resolved reference genomes for garden asparagus andA. horridus, to elucidate the sex chromosomes ofA. horridusand explore how dioecy evolved between these two closely related lineages. Analysis of theA. horridusgenome revealed an independently evolved XY system derived from different ancestral autosomes (chromosome 3) with different sex-determining genes than documented for garden asparagus (on chromosome 1). We estimate that proto-XY chromosomes evolved around 1-2 Ma in the Mediterranean Basin clade, following an ~2.1-megabase inversion between the ancestral pair. Recombination suppression and LTR retrotransposon accumulation drove the establishment and expansion of the Y-linked sex-determination region (Y-SDR) that now reaches ~9.6-megabases inA. horridus. The new garden asparagus genome revealed a Y-SDR that spans ~1.9-megabases with ten hemizygous genes. Our results evoke hemizygosity as the most probable mechanism responsible for the origin of proto-XY recombination suppression in the Eurasian clade, and that neofunctionalization of one duplicated gene (SOFF) drove the origin of dioecy. These findings support previous inference based on phylogeographic analysis revealing two recent origins of dioecy inAsparagus. Moreover, this work implicates alternative molecular mechanisms for two separate shifts to dioecy in a model taxon important for investigating young sex chromosome evolution.more » « less
-
Advances in genome sequencing have greatly accelerated the identification of sex chromosomes in a variety of species. Many of these species have experienced structural rearrangements that reduce recombination between the sex chromosomes, allowing the accumulation of sequence differences over many megabases. Identification of the genes that are responsible for sex determination within these sometimes large regions has proved difficult. Here, we identify an XY sex chromosome system on LG19 in the West African cichlid fishChromidotilapia guntheriin which the region of differentiation extends over less than 400 kb. We develop high-quality male and female genome assemblies for this species, which confirm the absence of structural variants, and which facilitate the annotation of genes in the region. The peak of differentiation lies withinrin3, which has experienced several debilitating mutations on the Y chromosome. We suggest two hypotheses about how these mutations might disrupt endocytosis, leading to Mendelian effects on sexual development.more » « less
An official website of the United States government

