skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1830753

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Betran, Esther (Ed.)
    Abstract Cichlid fishes have undergone an extraordinary diversification in East Africa. They also have a high rate of sex chromosome turnover. This clade provides an opportunity to study the rates and patterns of sex chromosome turnover, and the interactions of sex chromosome turnover with adaptation and speciation. Here we investigate the evolution sex chromosomes in the tribes Tilapiini, Coptodonini, Heterotilapiini, Gobiocichlini, Pelmatolapiini and Oreochromini. We assembled chromosome-scale genomes of male and female Pelmatotilapia mariae. We then mapped pooled sequencing reads for males and females of P. mariae and 12 additional species on several genome assemblies to identify sex chromosomes. Tilapia sparrmanii and Oreochromis aureus share a ZW system on LG3 that overlaps the ZW system identified in P. mariae. Heterotilapia buettikoferi, T. brevimanus and Coptodon bakossiorum share an XY system mapping to another region of LG3. Coptodon zilli, Sarotherodon galilaeus, S. melanotheron and O. niloticus share an XY system on LG1. Finally, O. mossambicus and O. shiranus share an XY system on LG14 and we find evidence of an XY system on LG20 in Danakilia sp. ‘shukoray’. The phylogenetic distribution of these sex determination systems suggests a long period of polymorphism for the systems on LG1 and LG3 and a generally lower rate of sex chromosome turnover in these lineages compared to the lacustrine lineages of the East African radiation. Our data is not consistent with the recent suggestion of figla and banf2 as candidate genes for the LG1XY and LG3ZW systems. We suggest a possible role for ubiquitination in the XY systems on LG3. 
    more » « less
    Free, publicly-accessible full text available October 9, 2026
  2. ABSTRACT Cichlid fishes have the highest rates of evolutionary turnover of sex chromosomes among vertebrates. Many large structural polymorphisms in the radiation of cichlids in Lake Malawi are associated with sex chromosomes and may also carry adaptive variation. Here, we investigate the structure and evolutionary history of an inversion polymorphism that includes both a ZW sex locus and an orange‐blotch colour polymorphism in the rock‐dwelling cichlid fishes of Lake Malawi. We use long‐read sequencing to characterise the sequence and breakpoints of the inversion. We quantify allele frequency differences across the inversion in population samples of the generaMetriaclimaandLabeotropheus. We also examine expression differences of genes in the inversion. The simple inversion spans 7 Mb and is flanked by CACTA transposons that may have catalysed the rearrangement. The region includes ~600 genes, several of which show large differences in expression. Some of these genes are candidates for the sex and colour phenotypes. This inversion is an accessible model system for studying the role of structural polymorphisms and sex chromosome turnover in the adaptive radiation of cichlids in the lakes of East Africa. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  3. Abstract Sex chromosome replacement is frequent in many vertebrate clades, including fish, frogs, and lizards. In order to understand the mechanisms responsible for sex chromosome turnover and the early stages of sex chromosome divergence, it is necessary to study lineages with recently evolved sex chromosomes. Here we examine sex chromosome evolution in a group of African cichlid fishes (tribe Tropheini) which began to diverge from one another less than 4 MYA. We have evidence for a previously unknown sex chromosome system, and preliminary indications of several additional systems not previously reported in this group. We find a high frequency of sex chromosome turnover and estimate a minimum of 14 turnovers in this tribe. We date the origin of the most common sex determining system in this tribe (XY-LG5/19) near the base of one of two major sub-clades of this tribe, about 3.4 MY ago. Finally, we observe variation in the size of one sex-determining region that suggests independent evolution of evolutionary strata in species with a shared sex-determination system. Our results illuminate the rapid rate of sex chromosome turnover in the tribe Tropheini and set the stage for further studies of the dynamics of sex chromosome evolution in this group. 
    more » « less
  4. ABSTRACT Chromosomal inversions are an important class of genetic variation that link multiple alleles together into a single inherited block that can have important effects on fitness. To study the role of large inversions in the massive evolutionary radiation of Lake Malawi cichlids, we used long-read technologies to identify four single and two tandem inversions that span half of each respective chromosome, and which together encompass over 10% of the genome. Each inversion is fixed in one of the two states within the seven major ecogroups, suggesting they played a role in the separation of the major lake lineages into specific lake habitats. One exception is within the benthic sub-radiation, where both inverted and non-inverted alleles continue to segregate within the group. The evolutionary histories of three of the six inversions suggest they transferred from the pelagic Diplotaxodon group into benthic ancestors at the time the benthic sub-radiation was seeded. The remaining three inversions are found in a subset of benthic species living in deep waters. We show that some of these inversions are used as XY sex-determination systems but are also likely limited to a subset of total lake species. Our work suggests that inversions have been under both sexual and natural selection in Lake Malawi cichlids and that they will be important to understanding how this adaptive radiation evolved. 
    more » « less
  5. Abstract African cichlid fishes are known for their high rates of phenotypic evolution. A rapid rate of diversification is apparent also in the diversity of their sex chromosomes. To date, sex determiners have been identified on 18 of 22 chromosomes in the standard karyotype. Here, we use whole-genome sequencing to characterize the sex chromosomes of seven populations of basal haplochromines, focusing on the genus Pseudocrenilabrus. We identify six new sex chromosome systems, including the first report of a cichlid sex–determining system on linkage group 12. We then quantify the rates and patterns of sex chromosome turnover in this clade. Finally, we test whether some autosomes become sex chromosomes in East African cichlids more often than expected by chance. 
    more » « less
  6. Ostrander, Elaine (Ed.)
    Abstract Mpv17 (mitochondrial inner membrane protein MPV17) deficiency causes severe mitochondrial DNA depletion syndrome in mammals and loss of pigmentation of iridophores and a significant decrease of melanophores in zebrafish. The reasons for this are still unclear. In this study, we established an mpv17 homozygous mutant line in Nile tilapia. The developing mutants are transparent due to the loss of iridophores and aggregation of pigment granules in the melanophores and disappearance of the vertical pigment bars on the side of the fish. Transcriptome analysis using the skin of fish at 30 dpf (days post fertilization) revealed that the genes related to purine (especially pnp4a) and melanin synthesis were significantly downregulated. However, administration of guanine diets failed to rescue the phenotype of the mutants. In addition, no obvious apoptosis signals were observed in the iris of the mutants by TUNEL staining. Significant downregulation of genes related to iridophore differentiation was detected by qPCR. Insufficient ATP, as revealed by ATP assay, α-MSH treatment, and adcy5 mutational analysis, might account for the defects of melanophores in mpv17 mutants. Several tissues displayed less mtDNA and decreased ATP levels. Taken together, these results indicated that mutation of mpv17 led to mitochondrial dTMP deficiency, followed by impaired mtDNA content and mitochondrial function, which in turn, led to loss of iridophores and a transparent body color in tilapia. 
    more » « less
  7. vonHoldt, Bridgett (Ed.)
    Abstract Premelanosome protein (pmel) is a key gene for melanogenesis. Mutations in this gene are responsible for white plumage in chicken, but its role in pigmentation of fish remains to be demonstrated. In this study, we found that most fishes have 2 pmel genes arising from the teleost-specific whole-genome duplication. Both pmela and pmelb were expressed at high levels in the eyes and skin of Nile tilapia. We mutated both genes in tilapia using CRISPR/Cas9. Homozygous mutation of pmela resulted in yellowish body color with weak vertical bars and a hypopigmented retinal pigment epithelium (RPE) due to significantly reduced number and size of melanophores. In contrast, we observed an increased number and size of xanthophores in mutants compared to wild-type fish. Homozygous mutation of pmelb resulted in a similar, but milder phenotype than pmela−/− mutants. Double mutation of pmela and pmelb resulted in loss of additional melanophores compared to the pmela−/− mutants, and also an increase in the number and size of xanthophores, producing a golden body color. The RPE pigmentation of pmela−/−;pmelb−/− was similar to pmela−/− mutants, with much less pigmentation than pmelb−/− mutants and wild-type fish. Taken together, our results indicate that, although both pmel genes are important for the formation of body color in tilapia, pmela plays a more important role than pmelb. To our knowledge, this is the first report on mutation of pmelb or both pmela;pmelb in fish. Studies on these mutants suggest new strategies for breeding golden tilapia, and also provide a new model for studies of pmel function in vertebrates. 
    more » « less
  8. vonHoldt, Bridgett (Ed.)
    Abstract The diverse color patterns of cichlid fishes play an important role in mate choice and speciation. Here we develop the Nile tilapia (Oreochromis niloticus) as a model system for studying the developmental genetics of cichlid color patterns. We identified 4 types of pigment cells: melanophores, xanthophores, iridophores and erythrophores, and characterized their first appearance in wild-type fish. We mutated 25 genes involved in melanogenesis, pteridine metabolism, and the carotenoid absorption and cleavage pathways. Among the 25 mutated genes, 13 genes had a phenotype in both the F0 and F2 generations. None of F1 heterozygotes had phenotype. By comparing the color pattern of our mutants with that of red tilapia (Oreochromis spp), a natural mutant produced during hybridization of tilapia species, we found that the pigmentation of the body and eye is controlled by different genes. Previously studied genes like mitf, kita/kitlga, pmel, tyrb, hps4, gch2, csf1ra, pax7b, and bco2b were proved to be of great significance for color patterning in tilapia. Our results suggested that tilapia, a fish with 4 types of pigment cells and a vertically barred wild-type color pattern, together with various natural and artificially induced color gene mutants, can serve as an excellent model system for study color patterning in vertebrates. 
    more » « less
  9. Abstract BackgroundAfrican cichlid fishes are well known for their rapid radiations and are a model system for studying evolutionary processes. Here we compare multiple, high-quality, chromosome-scale genome assemblies to elucidate the genetic mechanisms underlying cichlid diversification and study how genome structure evolves in rapidly radiating lineages. ResultsWe re-anchored our recent assembly of the Nile tilapia (Oreochromis niloticus) genome using a new high-density genetic map. We also developed a new de novo genome assembly of the Lake Malawi cichlid, Metriaclima zebra, using high-coverage Pacific Biosciences sequencing, and anchored contigs to linkage groups (LGs) using 4 different genetic maps. These new anchored assemblies allow the first chromosome-scale comparisons of African cichlid genomes. Large intra-chromosomal structural differences (~2–28 megabase pairs) among species are common, while inter-chromosomal differences are rare (<10 megabase pairs total). Placement of the centromeres within the chromosome-scale assemblies identifies large structural differences that explain many of the karyotype differences among species. Structural differences are also associated with unique patterns of recombination on sex chromosomes. Structural differences on LG9, LG11, and LG20 are associated with reduced recombination, indicative of inversions between the rock- and sand-dwelling clades of Lake Malawi cichlids. M. zebra has a larger number of recent transposable element insertions compared with O. niloticus, suggesting that several transposable element families have a higher rate of insertion in the haplochromine cichlid lineage. ConclusionThis study identifies novel structural variation among East African cichlid genomes and provides a new set of genomic resources to support research on the mechanisms driving cichlid adaptation and speciation. 
    more » « less
  10. Abstract Recent studies have revealed an astonishing diversity of sex chromosomes in many vertebrate lineages, prompting questions about the mechanisms of sex chromosome turnover. While there is considerable population genetic theory about the evolutionary forces promoting sex chromosome replacement, this theory has not yet been integrated with our understanding of the molecular and developmental genetics of sex determination. Here, we review recent data to examine four questions about how the structure of gene networks influences the evolution of sex determination. We argue that patterns of epistasis, arising from the structure of genetic networks, may play an important role in regulating the rates and patterns of sex chromosome replacement. 
    more » « less