skip to main content

Title: Coding and Analyzing Scientific Observations From Middle School Students in Minecraft
The importance of promoting interest in STEM is crucial to the recruitment and retainment of underrepresented populations in the STEM field. We created a one-week summer camp program centered around astronomy using Minecraft to help promote interest in science. We capitalize on data logs collected from two 1-week camps in summer 2019 and code scientific observations made by campers for the types of scientific observations and their level of quality using Cohen’s Kappa. Results showed that the majority of observations are descriptive, comparative, inferential, or analogous, as opposed to being off topic or factual. We discuss possible reasons for this distribution and design implications for future reiterations.
; ;
Award ID(s):
Publication Date:
Journal Name:
14th International Conference of the Learning Sciences (ICLS) 2020
Sponsoring Org:
National Science Foundation
More Like this
  1. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences canmore »be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce.« less
  2. ABSTRACT Traditional lecture-centered approaches alone are inadequate for preparing students for the challenges of creative problem solving in the STEM disciplines. As an alternative, learnercentered and other high-impact pedagogies are gaining prominence. The Wabash College 3D Printing and Fabrication Center (3D-PFC) supports several initiatives on campus, but one of the most successful is a computer-aided design (CAD) and fabrication-based undergraduate research internship program. The first cohort of four students participated in an eight-week program during the summer of 2015. A second group of the four students was successfully recruited to participate the following summer. This intensive materials science research experience challenged students to employ digital design and fabrication in the design, testing, and construction of inexpensive scientific instrumentation for use in introductory STEM courses at Wabash College. The student research interns ultimately produced a variety of successful new designs that could be produced for less than $25 per device and successfully detect analytes of interest down to concentrations in the parts per million (ppm) range. These student-produced instruments have enabled innovations in the way introductory instrumental analysis is taught on campus. Beyond summer work, the 3D-PFC staffed student interns during the academic year, where they collaborated on various cross-disciplinary projectsmore »with students and faculty from departments such as mathematics, physics, biology, rhetoric, history, classics, and English. Thus far, the student work has led to three campus presentations, four presentations at national professional conferences, and three peer-reviewed publications. The following report highlights initial progress as well as preliminary assessment findings.« less
  3. The goal of What-if Hypothetical Implementations in Minecraft (WHIMC) is to develop computer simulations that engage, excite, and generate interest in science. WHIMC leverages Minecraft as a learning environment for learners to interactively explore the scientific consequences of alternative versions of Earth via “what if?” questions, such as “What if the earth had no moon?” or “What if the earth were twice its current size?” Learners using our mods are invited to make observations and propose scientific explanations for what they see as different. Given ongoing discoveries of potentially habitable worlds throughout the Galaxy, such questions have high relevance to public discourse around space exploration, conditions necessary for life, and the long-term future of the human race. Studies in our project are occurring across three informal learning settings: museum exhibits, after school programs, and summer camps. Our research is driven by the following research questions: 1. What technology-based triggers of interest have the strongest influence on interest? 2. Which contextual factors are most important for supporting long-term interest development? 3. And, what kinds of technology-based triggers are most effective for learners from audiences who are underrepresented in STEM?
  4. The COVID-19 pandemic grounded the implementation of many research projects. However, with the intervention of the NSF research grant awarded to a Historically Black College and University (HBCU), with a specific goal to increase students’ achievement in multiple STEM disciplines, the pandemic challenges provided opportunities to effectively achieve the project objectives. The Adapting an Experiment-centric Teaching Approach to Increase Student Achievement in Multiple STEM Disciplines (ETA-STEM) project aims to implement an evidence-based, experiment-focused teaching approach called Experimental Centric Pedagogy (ECP) in multiple STEM disciplines. The ECP has been shown to motivate students and increase the academic success of minority students in electrical engineering in various institutions. During the Summer of 2020, the ETA-STEM Trainees engaged in research activities to develop three instruments in their respective disciplines. This paper highlights the strategic planning of the project management team, the implementation of the ECP, a comprehensive breakdown of activities and an evaluation of effectiveness of the virtual training. The 13-week intensive virtual training using Canvas learning management system and zoom virtual platform provided the opportunity to effectively interact and collaborate with project team members. Some of the summer training activities and topics included: instrumentation and measurements in STEM fields, sensors and signalmore »conditioning, assessing the performance of instruments and sensors, effective library and literature search, introduction to education research, writing excellent scientific papers, as well as the implementation and development of ECP curriculum with focus on home-based experiment. Prior to the training, ECP kits were shipped to the team and facilitators fully utilized the virtual platform to collaborate with team members. Overall, there was a great satisfaction and confidence with the participants designing three home-based experiments using the M1K and M2K analog devices.« less
  5. Elementary school is the first opportunity most students have to learn about STEM; however, elementary teachers are sometimes the least confident and prepared to teach STEM concepts and practices. Research Experience for Teachers (RET) programs are an established form of K-12 teacher professional development in which teachers are invited to work as members of a laboratory research team to increase their enthusiasm, knowledge and experience in STEM fields. The Engineering for Biology: Multidisciplinary Research Experiences for Teachers (MRET) of Elementary Grades was a 7-week summer program in which teachers were embedded as contributing members of engineering laboratory research teams and was established with the goals of (1) increasing teacher knowledge of STEM concepts and practices, (2) fostering mentoring relationships among researchers and teachers in each laboratory, and (3) guiding the translation of the teachers’ laboratory experience into the classroom through the development of STEM learning units. This exploratory study focuses on the second goal, and involves the use of developmental network theory to discriminate mentoring among participants within the summer 2017 and 2018 cycles of MRET. Using data collected in daily observations as well as daily activity and conversation logs submitted by all participants during the lab experience, post participationmore »surveys, and post program semi structured interviews, we have characterized a network of mentoring that existed within the lab portion of MRET as being multidirectional and potentially beneficial to all members, including researchers as well as teachers. This finding challenges the currently accepted assumption that teachers are the primary beneficiaries of mentoring within RET programs. If demonstrated to be appropriate and transferrable to the RET context, such a perspective could enhance our understanding of the experience and be used for maximizing the outcomes for all participants.« less