skip to main content


Title: Generalizability test of a deep learning-based CT image denoising method
Deep learning (DL) has been increasingly explored in low-dose CT image denoising. DL products have also been submitted to the FDA for premarket clearance. While having the potential to improve image quality over the filtered back projection method (FBP) and produce images quickly, generalizability of DL approaches is a major concern because the performance of a DL network can depend highly on the training data. In this work we take a residual encoder-decoder convolutional neural network (REDCNN)-based CT denoising method as an example. We investigate the effect of the scan parameters associated with the training data on the performance of this DL-based CT denoising method and identifies the scan parameters that may significantly impact its performance generalizability. This abstract particularly examines these three parameters: reconstruction kernel, dose level and slice thickness. Our preliminary results indicate that the DL network may not generalize well between FBP reconstruction kernels, but is insensitive to slice thickness for slice-wise denoising. The results also suggest that training with mixed dose levels improves denoising performance.  more » « less
Award ID(s):
1838179
NSF-PAR ID:
10309183
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The 6th International Conference on Image Formation in X-Ray Computed Tomography
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A body of studies has proposed to obtain high-quality images from low-dose and noisy Computed Tomography (CT) scans for radiation reduction. However, these studies are designed for population-level data without considering the variation in CT devices and individuals, limiting the current approaches' performance, especially for ultra-low-dose CT imaging. Here, we proposed PIMA-CT, a physical anthropomorphic phantom model integrating an unsupervised learning framework, using a novel deep learning technique called Cyclic Simulation and Denoising (CSD), to address these limitations. We first acquired paired low-dose and standard-dose CT scans of the phantom and then developed two generative neural networks: noise simulator and denoiser. The simulator extracts real low-dose noise and tissue features from two separate image spaces (e.g., low-dose phantom model scans and standard-dose patient scans) into a unified feature space. Meanwhile, the denoiser provides feedback to the simulator on the quality of the generated noise. In this way, the simulator and denoiser cyclically interact to optimize network learning and ease the denoiser to simultaneously remove noise and restore tissue features. We thoroughly evaluate our method for removing both real low-dose noise and Gaussian simulated low-dose noise. The results show that CSD outperforms one of the state-of-the-art denoising algorithms without using any labeled data (actual patients' low-dose CT scans) nor simulated low-dose CT scans. This study may shed light on incorporating physical models in medical imaging, especially for ultra-low level dose CT scans restoration. 
    more » « less
  2. Purpose

    To develop a physics‐guided deep learning (PG‐DL) reconstruction strategy based on a signal intensity informed multi‐coil (SIIM) encoding operator for highly‐accelerated simultaneous multislice (SMS) myocardial perfusion cardiac MRI (CMR).

    Methods

    First‐pass perfusion CMR acquires highly‐accelerated images with dynamically varying signal intensity/SNR following the administration of a gadolinium‐based contrast agent. Thus, using PG‐DL reconstruction with a conventional multi‐coil encoding operator leads to analogous signal intensity variations across different time‐frames at the network output, creating difficulties in generalization for varying SNR levels. We propose to use a SIIM encoding operator to capture the signal intensity/SNR variations across time‐frames in a reformulated encoding operator. This leads to a more uniform/flat contrast at the output of the PG‐DL network, facilitating generalizability across time‐frames. PG‐DL reconstruction with the proposed SIIM encoding operator is compared to PG‐DL with conventional encoding operator, split slice‐GRAPPA, locally low‐rank (LLR) regularized reconstruction, low‐rank plus sparse (L + S) reconstruction, and regularized ROCK‐SPIRiT.

    Results

    Results on highly accelerated free‐breathing first pass myocardial perfusion CMR at three‐fold SMS and four‐fold in‐plane acceleration show that the proposed method improves upon the reconstruction methods use for comparison. Substantial noise reduction is achieved compared to split slice‐GRAPPA, and aliasing artifacts reduction compared to LLR regularized reconstruction, L + S reconstruction and PG‐DL with conventional encoding. Furthermore, a qualitative reader study indicated that proposed method outperformed all methods.

    Conclusion

    PG‐DL reconstruction with the proposed SIIM encoding operator improves generalization across different time‐frames /SNRs in highly accelerated perfusion CMR.

     
    more » « less
  3. Yap, Pew-Thian (Ed.)
    Diffusion weighted imaging (DWI) with multiple, high b-values is critical for extracting tissue microstructure measurements; however, high b-value DWI images contain high noise levels that can overwhelm the signal of interest and bias microstructural measurements. Here, we propose a simple denoising method that can be applied to any dataset, provided a low-noise, single-subject dataset is acquired using the same DWI sequence. The denoising method uses a one-dimensional convolutional neural network (1D-CNN) and deep learning to learn from a low-noise dataset, voxel-by-voxel. The trained model can then be applied to high-noise datasets from other subjects. We validated the 1D-CNN denoising method by first demonstrating that 1D-CNN denoising resulted in DWI images that were more similar to the noise-free ground truth than comparable denoising methods, e.g., MP-PCA, using simulated DWI data. Using the same DWI acquisition but reconstructed with two common reconstruction methods, i.e. SENSE1 and sum-of-square, to generate a pair of low-noise and high-noise datasets, we then demonstrated that 1D-CNN denoising of high-noise DWI data collected from human subjects showed promising results in three domains: DWI images, diffusion metrics, and tractography. In particular, the denoised images were very similar to a low-noise reference image of that subject, more than the similarity between repeated low-noise images (i.e. computational reproducibility). Finally, we demonstrated the use of the 1D-CNN method in two practical examples to reduce noise from parallel imaging and simultaneous multi-slice acquisition. We conclude that the 1D-CNN denoising method is a simple, effective denoising method for DWI images that overcomes some of the limitations of current state-of-the-art denoising methods, such as the need for a large number of training subjects and the need to account for the rectified noise floor. 
    more » « less
  4. Abstract Background

    Spectral CT material decomposition provides quantitative information but is challenged by the instability of the inversion into basis materials. We have previously proposed the constrained One‐Step Spectral CT Image Reconstruction (cOSSCIR) algorithm to stabilize the material decomposition inversion by directly estimating basis material images from spectral CT data. cOSSCIR was previously investigated on phantom data.

    Purpose

    This study investigates the performance of cOSSCIR using head CT datasets acquired on a clinical photon‐counting CT (PCCT) prototype. This is the first investigation of cOSSCIR for large‐scale, anatomically complex, clinical PCCT data. The cOSSCIR decomposition is preceded by a spectrum estimation and nonlinear counts correction calibration step to address nonideal detector effects.

    Methods

    Head CT data were acquired on an early prototype clinical PCCT system using an edge‐on silicon detector with eight energy bins. Calibration data of a step wedge phantom were also acquired and used to train a spectral model to account for the source spectrum and detector spectral response, and also to train a nonlinear counts correction model to account for pulse pileup effects. The cOSSCIR algorithm optimized the bone and adipose basis images directly from the photon counts data, while placing a grouped total variation (TV) constraint on the basis images. For comparison, basis images were also reconstructed by a two‐step projection‐domain approach of Maximum Likelihood Estimation (MLE) for decomposing basis sinograms, followed by filtered backprojection (MLE + FBP) or a TV minimization algorithm (MLE + TVmin) to reconstruct basis images. We hypothesize that the cOSSCIR approach will provide a more stable inversion into basis images compared to two‐step approaches. To investigate this hypothesis, the noise standard deviation in bone and soft‐tissue regions of interest (ROIs) in the reconstructed images were compared between cOSSCIR and the two‐step methods for a range of regularization constraint settings.

    Results

    cOSSCIR reduced the noise standard deviation in the basis images by a factor of two to six compared to that of MLE + TVmin, when both algorithms were constrained to produce images with the same TV. The cOSSCIR images demonstrated qualitatively improved spatial resolution and depiction of fine anatomical detail. The MLE + TVminalgorithm resulted in lower noise standard deviation than cOSSCIR for the virtual monoenergetic images (VMIs) at higher energy levels and constraint settings, while the cOSSCIR VMIs resulted in lower noise standard deviation at lower energy levels and overall higher qualitative spatial resolution. There were no statistically significant differences in the mean values within the bone region of images reconstructed by the studied algorithms. There were statistically significant differences in the mean values within the soft‐tissue region of the reconstructed images, with cOSSCIR producing mean values closer to the expected values.

    Conclusions

    The cOSSCIR algorithm, combined with our previously proposed spectral model estimation and nonlinear counts correction method, successfully estimated bone and adipose basis images from high resolution, large‐scale patient data from a clinical PCCT prototype. The cOSSCIR basis images were able to depict fine anatomical details with a factor of two to six reduction in noise standard deviation compared to that of the MLE + TVmintwo‐step approach.

     
    more » « less
  5. Currently deployed election systems that scan and process hand-marked ballots are not sophisticated enough to handle marks insufficiently filled in (e.g., partially filled-in), improper marks (e.g., using check marks or crosses instead of filling in bubbles), or marks outside of bubbles, other than setting a threshold to detect whether the pixels inside bubbles are dark and dense enough to be counted as a vote. The current works along this line are still largely limited by their degree of automation and require substantial manpower for annotation and adjudication. In this study, we propose a highly automated deep learning (DL) mark segmentation model-based ballot tabulation assistant able to accurately identify legitimate ballot marks. For comparison purposes, a highly customized traditional computer vision (T-CV) mark segmentation-based method has also been developed to compare with the DL-based tabulator, with a detailed discussion included. Our experiments conducted on two real election datasets achieved the highest accuracy of 99.984% on ballot tabulation. In order to further enhance our DL model’s capability of detecting the marks that are underrepresented in training datasets, e.g., insufficiently or improperly filled marks, we propose a Siamese network architecture that enables our DL model to exploit the contrasting features between a handmarked ballot image and its corresponding blank template image to detect marks. Without the need for extra data collection, by incorporating this novel network architecture, our DL modelbased tabulation method not only achieved a higher accuracy score but also substantially reduced the overall false negative rate. 
    more » « less