skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generalizability test of a deep learning-based CT image denoising method
Deep learning (DL) has been increasingly explored in low-dose CT image denoising. DL products have also been submitted to the FDA for premarket clearance. While having the potential to improve image quality over the filtered back projection method (FBP) and produce images quickly, generalizability of DL approaches is a major concern because the performance of a DL network can depend highly on the training data. In this work we take a residual encoder-decoder convolutional neural network (REDCNN)-based CT denoising method as an example. We investigate the effect of the scan parameters associated with the training data on the performance of this DL-based CT denoising method and identifies the scan parameters that may significantly impact its performance generalizability. This abstract particularly examines these three parameters: reconstruction kernel, dose level and slice thickness. Our preliminary results indicate that the DL network may not generalize well between FBP reconstruction kernels, but is insensitive to slice thickness for slice-wise denoising. The results also suggest that training with mixed dose levels improves denoising performance.  more » « less
Award ID(s):
1838179
PAR ID:
10309183
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The 6th International Conference on Image Formation in X-Ray Computed Tomography
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, Deep Image Prior (DIP) has emerged as an effective unsupervised one-shot learner, delivering competitive results across various image recovery problems. This method only requires the noisy measurements and a forward operator, relying solely on deep networks initialized with random noise to learn and restore the structure of the data. However, DIP is notorious for its vulnerability to overfitting due to the overparameterization of the network. Building upon insights into the impact of the DIP input and drawing inspiration from the gradual denoising process in cutting-edge diffusion models, we introduce Autoencoding Sequential DIP (aSeqDIP) for image reconstruction. This method progressively denoises and reconstructs the image through a sequential optimization of network weights. This is achieved using an input-adaptive DIP objective, combined with an autoencoding regularization term. Compared to diffusion models, our method does not require training data and outperforms other DIP-based methods in mitigating noise overfitting while maintaining a similar number of parameter updates as Vanilla DIP. Through extensive experiments, we validate the effectiveness of our method in various image reconstruction tasks, such as MRI and CT reconstruction, as well as in image restoration tasks like image denoising, inpainting, and non-linear deblurring. 
    more » « less
  2. A body of studies has proposed to obtain high-quality images from low-dose and noisy Computed Tomography (CT) scans for radiation reduction. However, these studies are designed for population-level data without considering the variation in CT devices and individuals, limiting the current approaches' performance, especially for ultra-low-dose CT imaging. Here, we proposed PIMA-CT, a physical anthropomorphic phantom model integrating an unsupervised learning framework, using a novel deep learning technique called Cyclic Simulation and Denoising (CSD), to address these limitations. We first acquired paired low-dose and standard-dose CT scans of the phantom and then developed two generative neural networks: noise simulator and denoiser. The simulator extracts real low-dose noise and tissue features from two separate image spaces (e.g., low-dose phantom model scans and standard-dose patient scans) into a unified feature space. Meanwhile, the denoiser provides feedback to the simulator on the quality of the generated noise. In this way, the simulator and denoiser cyclically interact to optimize network learning and ease the denoiser to simultaneously remove noise and restore tissue features. We thoroughly evaluate our method for removing both real low-dose noise and Gaussian simulated low-dose noise. The results show that CSD outperforms one of the state-of-the-art denoising algorithms without using any labeled data (actual patients' low-dose CT scans) nor simulated low-dose CT scans. This study may shed light on incorporating physical models in medical imaging, especially for ultra-low level dose CT scans restoration. 
    more » « less
  3. Abstract PurposeTo examine the effect of incorporating self‐supervised denoising as a pre‐processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K‐space data employed for training are typically multi‐coil and inherently noisy. Although DL‐based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise‐free datasets is impractical. MethodsWe leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL‐based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model‐Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL‐based methods in solving accelerated multi‐coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2‐weighted brain and fat‐suppressed proton‐density knee scans. ResultsWe observed that self‐supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal‐to‐noise ratio (PSNR) across different SNR levels, including 32, 22, and 12 dB for T2‐weighted brain data, and 24, 14, and 4 dB for fat‐suppressed knee data. ConclusionWe showed that denoising is an essential pre‐processing technique capable of improving the efficacy of DL‐based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise‐free reference MRI scans. 
    more » « less
  4. In this research, both image denoising and kidney segmentation tasks are addressed jointly via one multitask deep convolutional network. This multitasking scheme yields better results for both tasks compared to separate single-task methods. Also, to the best of our knowledge, this is a first time attempt at addressing these joint tasks in low-dose CT scans (LDCT). This new network is a conditional generative adversarial network (C-GAN) and is an extension of the image-to-image translation network. To investigate the generalized nature of the network, two other conventional single task networks are also exploited, including the well-known 2D UNet method for segmentation and the more recently proposed method WGAN for LDCT denoising. Implementation results proved that the proposed method outperforms UNet and WGAN for both tasks. 
    more » « less
  5. Inspired by their success in solving challenging inverse problems in computer vision, implicit neural representations (INRs) have been recently proposed for reconstruction in low-dose/sparse-view X-ray computed tomography (CT). An INR represents a CT image as a small-scale neural network that takes spatial coordinates as inputs and outputs attenuation values. Fitting an INR to sinogram data is similar to classical model-based iterative reconstruction methods. However, training INRs with losses and gradient-based algorithms can be prohibitively slow, taking many thousands of iterations to converge. This paper investigates strategies to accelerate the optimization of INRs for CT reconstruction. In particular, we propose two approaches: (1) using a modified loss function with improved conditioning, and (2) an algorithm based on the alternating direction method of multipliers. We illustrate that both of these approaches significantly accelerate INR-based reconstruction of a synthetic breast CT phantom in a sparse-view setting. 
    more » « less