skip to main content


Title: A Tumbling Magnetic Microrobot System for Biomedical Applications
A microrobot system comprising an untethered tumbling magnetic microrobot, a two-degree-of-freedom rotating permanent magnet, and an ultrasound imaging system has been developed for in vitro and in vivo biomedical applications. The microrobot tumbles end-over-end in a net forward motion due to applied magnetic torque from the rotating magnet. By turning the rotational axis of the magnet, two-dimensional directional control is possible and the microrobot was steered along various trajectories, including a circular path and P-shaped path. The microrobot is capable of moving over the unstructured terrain within a murine colon in in vitro, in situ, and in vivo conditions, as well as a porcine colon in ex vivo conditions. High-frequency ultrasound imaging allows for real-time determination of the microrobot’s position while it is optically occluded by animal tissue. When coated with a fluorescein payload, the microrobot was shown to release the majority of the payload over a 1-h time period in phosphate-buffered saline. Cytotoxicity tests demonstrated that the microrobot’s constituent materials, SU-8 and polydimethylsiloxane (PDMS), did not show a statistically significant difference in toxicity to murine fibroblasts from the negative control, even when the materials were doped with magnetic neodymium microparticles. The microrobot system’s capabilities make it promising for targeted drug delivery and other in vivo biomedical applications.  more » « less
Award ID(s):
1637961 1358446
NSF-PAR ID:
10309214
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Micromachines
Volume:
11
Issue:
9
ISSN:
2072-666X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polymer-based biomedical electronics provide a tunable platform to interact with nervous tissue both in vitro and in vivo. Ultimately, the ability to control functional properties of neural interfaces may provide important advantages to study the nervous system or to restore function in patients with neurodegenerative disorders. Liquid crystal elastomers (LCEs) are a class of smart materials that reversibly change shape when exposed to a variety of stimuli. Our interest in LCEs is based on leveraging this shape change to deploy electrode sites beyond the tissue regions exhibiting inflammation associated with chronic implantation. As a first step, we demonstrate that LCEs are cellular compatible materials that can be used as substrates for fabricating microelectrode arrays (MEAs) capable of recording single unit activity in vitro. Extracts from LCEs are non-cytotoxic (>70% normalized percent viability), as determined in accordance to ISO protocol 10993-5 using fibroblasts and primary murine cortical neurons. LCEs are also not functionally neurotoxic as determined by exposing cortical neurons cultured on conventional microelectrode arrays to LCE extract for 48 h. Microelectrode arrays fabricated on LCEs are stable, as determined by electrochemical impedance spectroscopy. Examination of the impedance and phase at 1 kHz, a frequency associated with single unit recording, showed results well within range of electrophysiological recordings over 30 days of monitoring in phosphate-buffered saline (PBS). Moreover, the LCE arrays are shown to support viable cortical neuronal cultures over 27 days in vitro and to enable recording of prominent extracellular biopotentials comparable to those achieved with conventional commercially-available microelectrode arrays. 
    more » « less
  2.  
    more » « less
  3. Abstract

    Metal–organic frameworks (MOFs) have applications in numerous fields. However, the development of MOF‐based “theranostic” macroscale devices is not achieved. Here, heparin‐coated biocompatible MOF/poly(ε‐caprolactone) (PCL) “theranostic” stents are developed, where NH2‐Materials of Institute Lavoisier (MIL)‐101(Fe) encapsulates and releases rapamycin (an immunosuppressive drug). These stents also act as a remarkable source of contrast in ex vivo magnetic resonance imaging (MRI) compared to the invisible polymeric stent. The in vitro release patterns of heparin and rapamycin respectively can ensure a type of programmed model to prevent blood coagulation immediately after stent placement in the artery and stenosis over a longer term. Due to the presence of hydrolysable functionalities in MOFs, the stents are shown to be highly biodegradable in degradation tests under various conditions. Furthermore, there is no compromise of mechanical strength or flexibility with MOF compositing. The system described here promises many biomedical applications in macroscale theranostic devices. The use of MOF@PCL can render a medical device MRI‐visible while simultaneously acting as a carrier for therapeutic agents.

     
    more » « less
  4. Medical micro/nanorobots have received tremendous attention over the past decades owing to their potential to be navigated into hard-to-reach tissues for a number of biomedical applications ranging from targeted drug/gene delivery, bio-isolation, detoxification, to nanosurgery. Despite the great promise, the majority of the past demonstrations are primarily under benchtop or in vitro conditions. Many developed micro/nanoscale propulsion mechanisms are based on the assumption of a homogeneous, Newtonian environment, while realistic biological environments are substantially more complex. Moving toward practical medical use, the field of micro/nanorobotics must overcome several major challenges including propulsion through complex media (such as blood, mucus, and vitreous) as well as deep tissue imaging and control in vivo . In this review article, we summarize the recent research efforts on investigating how various complexities in biological environments impact the propulsion of micro/nanoswimmers. We also highlight the emerging technological approaches to enhance the locomotion of micro/nanorobots in complex environments. The recent demonstrations of in vivo imaging, control and therapeutic medical applications of such micro/nanorobots are introduced. We envision that continuing materials and technological innovations through interdisciplinary collaborative efforts can bring us steps closer to the fantasy of “swallowing a surgeon”. 
    more » « less
  5. Nano/microrobotic swimmers have many possible biomedical applications such as drug delivery and micro-manipulation. This paper examines one of the most promising classes of these: rigid magnetic microrobots that are propelled through bulk fluid by rotation induced by a rotating magnetic field. Propulsion corresponds to steadily rotating and translating solutions of the dynamics of such microrobots that co-rotate with the magnetic field. To be observed in experiments and be amenable to steering control, such solutions must also be stable to perturbations. In this paper, we analytically derive a criterion for the stability of such steadily rotating solutions for a microrobot made of soft magnetic materials, which have a magnetization that depends on the applied field. This result generalizes previous stability criteria we obtained for microrobots with a permanent magnetization. 
    more » « less