skip to main content

Title: Plant biodiversity and the regeneration of soil fertility
Fertile soils have been an essential resource for humanity for 10,000 y, but the ecological mechanisms involved in the creation and restoration of fertile soils, and especially the role of plant diversity, are poorly understood. Here we use results of a long-term, unfertilized plant biodiversity experiment to determine whether biodiversity, especially plant functional biodiversity, impacted the regeneration of fertility on a degraded sandy soil. After 23 y, plots containing 16 perennial grassland plant species had, relative to monocultures of these same species, ∼30 to 90% greater increases in soil nitrogen, potassium, calcium, magnesium, cation exchange capacity, and carbon and had ∼150 to 370% greater amounts of N, K, Ca, and Mg in plant biomass. Our results suggest that biodiversity, likely in combination with the increased plant productivity caused by higher biodiversity, led to greater soil fertility. Moreover, plots with high plant functional diversity, those containing grasses, legumes, and forbs, accumulated significantly greater N, K, Ca, and Mg in the total nutrient pool (plant biomass and soil) than did plots containing just one of these three functional groups. Plant species in these functional groups had trade-offs between their tissue N content, tissue K content, and root mass, suggesting why species from more » all three functional groups were essential for regenerating soil fertility. Our findings suggest that efforts to regenerate soil C stores and soil fertility may be aided by creative uses of plant diversity. « less
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  2. Foliar chemistry can be useful for diagnosing soil nutrient availability and plant nutrient limitation. In northern hardwood forests, foliar responses to nitrogen (N) addition have been more often studied than phosphorus (P) addition, and the interactive effects of N and P addition have rarely been described. In the White Mountains of central New Hampshire, plots in ten forest stands of three age classes across three sites were treated annually beginning in 2011 with 30 kg N ha −1 y −1 or 10 kg P ha −1 y −1 or both or neither–a full factorial design. Green leaves of American beech ( Fagus grandifolia Ehrh.), pin cherry ( Prunus pensylvanica L.f.), red maple ( Acer rubrum L.), sugar maple ( A. saccharum Marsh.), white birch ( Betula papyrifera Marsh.), and yellow birch ( B. alleghaniensis Britton) were sampled pre-treatment and 4–6 years post-treatment in two young stands (last cut between 1988–1990), four mid-aged stands (last cut between 1971–1985) and four mature stands (last cut between 1883–1910). In a factorial analysis of species, stand age class, and nutrient addition, foliar N was 12% higher with N addition ( p < 0.001) and foliar P was 45% higher with P addition ( p <more »0.001). Notably, P addition reduced foliar N concentration by 3% ( p = 0.05), and N addition reduced foliar P concentration by 7% ( p = 0.002). When both nutrients were added together, foliar P was lower than predicted by the main effects of N and P additions ( p = 0.08 for N × P interaction), presumably because addition of N allowed greater use of P for growth. Foliar nutrients did not differ consistently with stand age class ( p  ≥ 0.11), but tree species differed ( p  ≤ 0.01), with the pioneer species pin cherry having the highest foliar nutrient concentrations and the greatest responses to nutrient addition. Foliar calcium (Ca) and magnesium (Mg) concentrations, on average, were 10% ( p < 0.001) and 5% lower ( p = 0.01), respectively, with N addition, but were not affected by P addition ( p = 0.35 for Ca and p = 0.93 for Mg). Additions of N and P did not affect foliar potassium (K) concentrations ( p = 0.58 for N addition and p = 0.88 for P addition). Pre-treatment foliar N:P ratios were high enough to suggest P limitation, but trees receiving N ( p = 0.01), not P ( p = 0.64), had higher radial growth rates from 2011 to 2015. The growth response of trees to N or P addition was not explained by pre-treatment foliar N, P, N:P, Ca, Mg, or K.« less
  3. Abstract While the relationship between plant and microbial diversity has been well studied in grasslands, less is known about similar relationships in forests, especially for obligately symbiotic arbuscular mycorrhizal (AM) fungi. To assess the effect of varying tree diversity on microbial alpha- and beta-diversity, we sampled soil from plots in a high-density tree diversity experiment in Minnesota, USA three years after establishment. Three of 12 tree species are AM hosts; the other nine primarily associate with ectomycorrhizal fungi. We used phospho- and neutral lipid fatty acid analysis to characterize the biomass and functional identity of the whole soil bacterial and fungal community and high throughput sequencing to identify the species-level richness and composition of the AM fungal community. We found that plots of differing tree composition had different bacterial and fungal communities; plots with conifers, and especially Juniperus virginiana, had lower densities of several bacterial groups. In contrast, plots with a higher density or diversity of AM hosts showed no sign of greater AM fungal abundance or diversity. Our results indicate that early responses to plant diversity vary considerably across microbial groups, with AM fungal communities potentially requiring longer timescales to respond to changes in host tree diversity.
  4. The essential elements for the structure and function of forest ecosystems are found in relatively predictable proportions in living tissues and soils; however, both the degree of spatial variability in elemental concentrations and their relationship with wildfire history are unclear. Quantifying the association between nutrient concentrations in living plant tissue and surface soils within fire-affected forests can help determine how these elements contribute to biogeochemical resilience. Here, we present elemental concentration data (C, N, P, K, Ca, Mg, S, Fe, Mn, Zn) from 72 foliar and 44 soil samples from a network of 15 sites located in the fire-prone subalpine forests of the northern Rocky Mountains, USA Plant functional type is strongly correlated with carbon (C) and nitrogen (N) – C concentrations are highest in coniferous needles, and N concentrations are highest in broadleaved plant species. The average N / P ratio of foliage among samples is 9.8 ± 0.6 (μ ± 95 % confidence). This suggests that N is the limiting nutrient for these plants, however several factors can complicate the use of N / P ratios to evaluate nutrient status. Average C concentrations in organic soil horizons that were burned in regionally extensive fires in 1910 or 1918 CE are lower than those from sites that burned priormore »to 1901 CE (p < 0.05). This difference suggests that wildfires reduced the pool of soil C and that the legacy of these fires can be measured a century later. Our results help aid in modeling how changing wildfire regimes will influence biogeochemical cycling in subalpine forests.« less
  5. Exotic invasive plant species alter ecosystems and locally extirpate native plant species, and by doing so alter community structure. Changes in community structure may be particularly important if invaders promote species with certain traits. For example, the positive effects of most invaders on soil fertility may promote species with weedy traits, whether native or not. We examined the effects of two co-occurring Prosopis congeners, the native P. cineraria and the exotic invader P. juliflora, on species identified as “agricultural weeds” and species that were not agricultural weeds in the United Arab Emirates. When compared to plots in the open, P. cineraria canopies were associated with lower richness and density of non-weeds while having no impact on agricultural weed species. In contrast, there was lower richness and densities of non-weeds under canopies of P. juliflora, but higher densities of agricultural weeds than in the open surrounding the canopies. These patterns associated with Prosopis congeners and understory plant community composition might be due to the much higher litter deposition, if litter is inhibitory, and shallow root biomass under P. juliflora, or the different soil properties that corresponded with the two Prosopis canopies. In general, soils contained more nitrogen under P. juliflora thanmore »P. cineraria, and both understories were more fertile than soil in the open. Our results suggest that evolutionary history may play a role in how exotic invasive species may select for some traits over others in plant communities, with an exotic invader potentially creating reservoirs of agricultural weeds.« less