R code for Hastings, Y. D. (2022). Green Infrastructure Microbial Community Response to Simulated Pulse Precipitation Events in the Semi-Arid Western United States (Master's thesis, The University of Utah). This study was supported by a grant from the US National Science Foundation (DEB 2006308). R code for and Hastings, Y. D., et al. Green Infrastructure Microbial Community Response to Simulated Pulse Precipitation Events in the Semi-Arid Western United States. In review. Abstract: Nutrient retention in urban stormwater green infrastructure (SGI) of water-limited biomes is not well quantified, especially when stormwater inputs are scarce. We examined the role of plant diversity and physiochemistry as drivers of microbial community physiology and soil N pools and fluxes in bioswales subjected to simulated precipitation and a montane meadow experiencing natural rainfall within a semi-arid region during drought. Precipitation generally elevated soil moisture and pH, stimulated ecoenzyme activity, and increased the concentration of organic matter, proteins, and N pools in both bioswale and meadow soils; but the magnitude of change differed between events. Microbial community growth was static and N assimilation into biomass was limited across precipitation events. Unvegetated SGI plots had greater soil moisture, yet effects of plant diversity treatments on microbial C:N ratios, organic matter content, and N pools were inconsistent. Differences in soil N concentrations in bioswales and the meadow were most directly correlated to changes in organic matter content mediated by ecoenzyme expression and the balance of C, N, and P resources available to microbial communities. Our results add to growing evidence that ecological function of SGI is comparable to neighboring natural vegetated systems, particularly when soil media and water availability are similar. The file and R code structure is as follows: Data - Contains all data used for the analysis Results - Contains all figures, RMANOVA, and Piecewise Structural Equation Modeling results. renv - R environment used for project EEA_Vector_Analysis.R - R code used to analyze coenzyme (EEA) responses, including RMANOVA to look for significant differences in EEA response to simulated pulse events and Vector Analysis to determine the nutrient resource acquisition. Gravimetric_soil_moisture_pH.R - R code used for RMANOVA of gravimetric soil moisture and pH responses to simulated pulse events. MicrobialBiomass_EEA.Rproj - Downloaded R project Microbial_biomass.R - R code used for RMANOVA of microbial biomass carbon, nitrogen, and C:N responses to simulated pulse events. OM_protien_N_pools_fluxes.R - R code used for RMANOVA of organic matter content, proteins, and N pools and fluxes responses to simulated pulse events. PSEM_final.R - R code used for Pearson Correlation and Piecewise Structural Equation Modeling. Rclimate.R - R code used to obtain summary statistics of climate data from GIRF and TM climate and soil sensors. 
                        more » 
                        « less   
                    
                            
                            Green Infrastructure Microbial Community Response to Simulated Pulse Precipitation Events in the Semi-Arid Western United States
                        
                    
    
            Processes driving nutrient retention in stormwater green infrastructure (SGI) are not well quantified in water-limited biomes. We examined the role of plant diversity and physiochemistry as drivers of microbial community physiology and soil N dynamics post precipitation pulses in a semi-arid region experiencing drought. We conducted our study in bioswales receiving experimental water additions and a montane meadow intercepting natural rainfall. Pulses of water generally elevated soil moisture and pH, stimulated ecoenzyme activity (EEA), and increased the concentration of organic matter, proteins, and N pools in both bioswale and meadow soils. Microbial community growth was static, and N assimilation into biomass was limited across pulse events. Unvegetated plots had greater soil moisture than vegetated plots at the bioswale site, yet we detected no clear effect of plant diversity on microbial C:N ratios, EEAs, organic matter content, and N pools. Differences in soil N concentrations in bioswales and the meadow were most directly correlated to changes in organic matter content mediated by ecoenzyme expression and the balance of C, N, and P resources available to microbial communities. Our results add to growing evidence that SGI ecological function is largely comparable to neighboring natural vegetated systems, particularly when soil media and water availability are similar. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2006308
- PAR ID:
- 10557358
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Water
- Volume:
- 16
- Issue:
- 13
- ISSN:
- 2073-4441
- Page Range / eLocation ID:
- 1931
- Subject(s) / Keyword(s):
- ecoenzyme activity green infrastructure microbial biomass nitrogen plant diversity soils stoichiometry nature-based solutions
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Phosphorus (P) limits or co‐limits plant and microbial life in multiple ecosystems, including the arctic tundra. Although current global carbon (C) models focus on the coupling between soil nitrogen (N) and C, ecosystem P response to climate warming may also influence the global C cycle. Permafrost soils may see enhanced or reduced P availability under climate warming through multiple mechanisms including changing litter inputs through plant community change, changing plant–microbial dynamics, altered rates of mineralization of soil organic P through increased microbial activity, and newly exposed mineral‐bound P via deeper thaw. We investigated the effect of long‐term warming on plant leaf, multiple soil and microbial C, N, and P pools, and microbial extracellular enzyme activities, in Alaskan tundra plots underlain by permafrost. Here, we show that 25 yr of experimental summer warming increases community‐level plant leaf P through changing community composition to favour relatively P‐rich plant species. However, despite associated increases in P‐rich litter inputs, we found only a few responses in the belowground pools of P available for plant and microbial uptake, including a weak positive response for citric acid–extractable PO4in the surface soil, a decrease in microbial biomass P, and no change in soil P (or C or N) stocks. This weak, neutral, or negative belowground P response to warming despite enhanced litter P inputs is consistent with a growing number of studies in the arctic tundra that find no long‐term response of soil C and N stocks to warming.more » « less
- 
            Abstract Most soil carbon (C) is in the form of soil organic matter (SOM), the composition of which is controlled by the plant–microbe–soil continuum. The extent to which plant and microbial inputs contribute to persistent SOM has been linked to edaphic properties such as mineralogy and aggregation. However, it is unknown how variation in plant inputs, microbial community structure, and soil physical and chemical attributes interact to influence the chemical classes that comprise SOM pools. We used two long‐term biofuel feedstock field experiments to test the influence of cropping systems (corn and switchgrass) and soil characteristics (sandy and silty loams) on microbial selection and SOM chemistry. Cropping system had a strong influence on water‐extractable organic C chemistry with perennial switchgrass generally having a higher chemical richness than the annual corn cropping system. Nonetheless, cropping system was a less influential driver of soil microbial community structure and overall C chemistry than soil type. Soil type was especially influential on fungal community structure and the chemical composition of the chloroform‐extractable C. Although plant inputs strongly influence the substrates available for decomposition and SOM formation, total C and nitrogen (N) did not differ between cropping systems within either site. We conclude this is likely due to enhanced microbial activity under the perennial cropping system. Silty soils also had a higher activity of phosphate and C liberating enzymes. After 8 years, silty loams still contained twice the total C and N as sandy loams, with no significant response to biofuel cropping system inputs. Together, these results demonstrate that initial site selection is critical to plant–microbe interactions and substantially impacts the potential for long‐term C accrual in soils under biofuel feedstock production.more » « less
- 
            Abstract Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change.more » « less
- 
            Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert grasslandAbstract. Although the negative consequences of increased nitrogen (N) supply for plant communities and soil chemistry are well known, most studies have focused on mesic grasslands, and the fate of added N in arid and semi-arid ecosystems remains unclear. To study the impacts of long-term increased N deposition on ecosystem N pools, we sampled a 26-year-long fertilization (10 g N m−2 yr−1) experiment in the northern Chihuahuan Desert at the Sevilleta National Wildlife Refuge (SNWR) in New Mexico. To determine the fate of the added N, we measured multiple soil, microbial, and plant N pools in shallow soils at three time points across the 2020 growing season. We found small but significant increases with fertilization in soil-available NO3--N and NH4+-N, yet the soil microbial and plant communities do not appear to be taking advantage of the increased N availability, with no changes in biomass or N content in either community. However, there were increases in total soil N with fertilization, suggesting increases in microbial or plant N earlier in the experiment. Ultimately, the majority of the N added in this multi-decadal experiment was not found in the shallow soil or the microbial or plant community and is likely to have been lost from the ecosystem entirely.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    