Fiber bundle codes: breaking the n 1/2 polylog( n ) barrier for Quantum LDPC codes
- Award ID(s):
- 1909310
- PAR ID:
- 10309485
- Date Published:
- Journal Name:
- Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Sulfoximines are popular scaffolds in drug discovery due to their hydrogen bonding properties and chemical stability. In recent years, the role of reactive intermediates such as nitrenes has been studied in the synthesis and degradation of sulfoximines. In this work, the photochemistry ofN‐phenyl dibenzothiophene sulfoximine [5‐(phenylimino)‐5H‐5λ4‐dibenzo[b,d]thiopheneS‐oxide] was analyzed. The structure resembles a combination ofN‐phenyl iminodibenzothiophene and dibenzothiopheneS‐oxide, which generate nitrene and O(3P) upon UV‐A irradiation, respectively. The photochemistry ofN‐phenyl dibenzothiophene sulfoximine was explored by monitoring the formation of azobenzene, a photoproduct of triplet nitrene, using direct irradiation and sensitized experiments. The reactivity profile was further studied through direct irradiation experiments in the presence of diethylamine (DEA) as a nucleophile. The studies demonstrated thatN‐phenyl dibenzothiophene sulfoximine underwent S–N photocleavage to release singlet phenyl nitrene which formed a mixture of azepines in the presence of DEA and generated moderate amounts of azobenzene in the absence of DEA to indicate formation of triplet phenyl nitrene.more » « less
An official website of the United States government

