Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Motivated by estimation of quantum noise models, we study the problem of learning a Pauli channel, or more generally the Pauli error rates of an arbitrary channel. By employing a novel reduction to the "Population Recovery" problem, we give an extremely simple algorithm that learns the Pauli error rates of an n -qubit channel to precision ϵ in ℓ ∞ using just O ( 1 / ϵ 2 ) log ( n / ϵ ) applications of the channel. This is optimal up to the logarithmic factors. Our algorithm uses only unentangled state preparation and measurements, and the post-measurement classical runtime is just an O ( 1 / ϵ ) factor larger than the measurement data size. It is also impervious to a limited model of measurement noise where heralded measurement failures occur independently with probability ≤ 1 / 4 .We then consider the case where the noise channel is close to the identity, meaning that the no-error outcome occurs with probability 1 − η . In the regime of small η we extend our algorithm to achieve multiplicative precision 1 ± ϵ (i.e., additive precision ϵ η ) using just O ( 1 ϵ 2 η ) log ( n / ϵ ) applications of the channel.more » « less
-
Kohayakawa, Y.; Miyazawa, F.K. (Ed.)In this work we are interested in the problem of testing quantum entanglement. More specifically, we study the separability problem in quantum property testing, where one is given n copies of an unknown mixed quantum state ϱ on Cd⊗Cd , and one wants to test whether ϱ is separable or ϵ -far from all separable states in trace distance. We prove that n=Ω(d2/ϵ2) copies are necessary to test separability, assuming ϵ is not too small, viz. ϵ=Ω(1/d−−√) . We also study completely positive distributions on the grid [d]×[d] , as a classical analogue of separable states. We analogously prove that Ω(d/ϵ2) samples from an unknown distribution p are necessary to decide whether p is completely positive or ϵ -far from all completely positive distributions in total variation distance.more » « less
An official website of the United States government

Full Text Available