skip to main content


Title: Suction-Controlled Detachment of Mushroom-Shaped Adhesive Structures
Abstract Experimental evidence suggests that suction may play a role in the attachment strength of mushroom-tipped adhesive structures, but the system parameters which control this effect are not well established. A fracture mechanics-based model is introduced to determine the critical stress for defect propagation at the interface in the presence of trapped air. These results are compared with an experimental investigation of millimeter-scale elastomeric structures. These structures are found to exhibit a greater increase in strength due to suction than is typical in the literature, as they have a large tip diameter relative to the stalk. The model additionally provides insight into differences in expected behavior across the design space of mushroom-shaped structures. For example, the model reveals that the suction contribution is length-scale dependent. It is enhanced for larger structures due to increased volume change, and thus the attainment of lower pressures, inside of the defect. This scaling effect is shown to be less pronounced if the tip is made wider relative to the stalk. An asymptotic result is also provided in the limit that the defect is far outside of the stalk, showing that the critical stress is lower by a factor of 1/2 than the result often used in the literature to estimate the effect of suction. This discrepancy arises as the latter considers only the balance of remote stress and pressure inside the defect and neglects the influence of compressive tractions outside of the defect.  more » « less
Award ID(s):
1701365
NSF-PAR ID:
10309526
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Applied Mechanics
Volume:
88
Issue:
3
ISSN:
0021-8936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Key engineering properties of unsaturated soils such as volume change and shear strength can be defined using the effective stress principle. Several problems like prolonged drought, high-level radioactive waste, buried high voltage cables can subject surface and near-surface unsaturated soils to elevated temperatures. Such elevated temperatures can affect the hydraulic and mechanical behavior of unsaturated soils. It is very important to develop a closed-form model that can reasonably estimate the effective stresses under different elevated temperatures. For this purpose, the current study incorporates the temperature effect into a suction stress-based representation of Bishop’s effective stress. The proposed model accounts for the effect of temperature on matric suction and degree of saturation. A temperature-dependent soil water retention curve is used to account for thermal effects on surface tension, contact angle, and enthalpy of immersion per unit area. The proposed effective stress model is then used to calculate the effective stress for two soils, Pachapa loam, and Seochang sandy clay, at various temperatures ranging from 25°C to 100°C. The validity of the model is examined by comparing the predicted effective degree of saturation and suction stress values against the experimental data reported in the literature for GMZ01 bentonite. At a constant net normal stress, the results for both soils show that the impact of temperature on effective stress can be significant. The proposed model can be used for studying geotechnical and geoenvironmental engineering applications that involve elevated temperatures. 
    more » « less
  2. Well-graded soils can be found in nature and in engineered structures, such as dams and embankments. Prediction of their behavior is still an engineering challenge in part due to the lack of data in the literature, arguably due to difficulties associated in testing these soils in the laboratory and in situ. Particularly, there is still debate over the effect of the increased range of particle sizes (i.e., widening gradation) on the shear strength and dilatancy of coarse-grained soils. This paper presents the results of drained and undrained isotropically-consolidated triaxial compression tests on six soil mixes of varying gradation. These soils were sourced from a single natural deposit and selectively sieved and mixed to isolate the effects of gradation from those of particle shape and mineralogy. The results indicate that the critical state lines in void ratio – mean effective stress space move downward as the gradation becomes wider. For the same state parameter, the soils with a wider gradation exhibit greater dilatancy and generate negative excess pore pressures with greater magnitudes than the poorly-graded soils. In drained conditions, the greater dilatancy of the well-graded soils leads to greater peak friction angles, while in undrained conditions it leads to greater undrained shear strengths. The results show that these differences in behavior can only be captured when interpreting the results in terms of the state parameter and normalized state parameter, while comparing the results in terms of the void ratio or relative density obscures the effect of differences in gradation. 
    more » « less
  3. LEGOs are one of the most popular toys and are known to be useful as instructional tools in STEM education. In this work, we used LEGO structures to demonstrate the energetic size effect on structural strength. Many material's fexural strength decreases with increasing structural size. We seek to demonstrate this effect in LEGO beams. Fracture experiments were performed using 3-point bend beams built of 2 X 4 LEGO blocks in a periodic staggered arrangement. LEGO wheels were used as rollers on either ends of the specimens which were weight compensated by adding counterweights. [1] Specimens were loaded by hanging weights at their midspan and the maximum sustained load was recorded. Specimens with a built-in defect (crack) of half specimen height were considered. Beam height was varied from two to 32 LEGO blocks while keeping the in-plane aspect ratio constant. The specimen thickness was kept constant at one LEGO block. Slow-motion videos and sound recordings of fractures were captured to determine how the fracture originated and propagated through the specimen. Flexural stress was calculated based on nominal specimen dimensions and fracture toughness was calculated following ASTM E-399 standard expressions from Srawley (1976). [2] The results demonstrate that the LEGO beams indeed exhibit a size effect on strength. For smaller beams the Uexural strength is higher than for larger beams. The dependence of strength on size is similar to that of Bažant’s size effect law [3] . Initiation of failure occurs consistently at the built-in defect. The staggered arrangement causes persistent crack branching which is more pronounced in larger specimens. The results also show that the apparent fracture toughness increases as the specimen size decreases. Further ongoing investigations consider the effects of the initial crack length on the size effect and the fracture response. The present work demonstrates that LEGO structures can serve as an instructional tool. We demonstrate principles of non-linear elastic fracture mechanics and highlight the importance of material microstructure (architecture) in fracture response. The experimental method is reproducible in a classroom setting without the need for complex facilities. This work was partially supported by the National Science Foundation (NSF) under the award #1662177 and the School of Mechanical Engineering at Purdue University. The authors acknowledge the support of Dr. Thomas Siegmund and Glynn Gallaway. [1] Khalilpour, S., BaniAsad, E. and Dehestani, M., 2019. A review on concrete fracture energy and effective parameters. Cement and Concrete research, 120, pp.294-321. [2] Srawley, J.E., 1976, January. Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens. In Conf. of Am. Soc. for Testing and Mater., Committee E-24 (No. E-8654). [3] Bažant, Z.P., 1999. Size effect on structural strength: a review. Archive of applied Mechanics, 69(9), pp.703-725. 
    more » « less
  4. Frappier, Lori (Ed.)
    ABSTRACT Ubiquitous and abundant in ecosystems and microbiomes, gokushoviruses constitute a Microviridae subfamily, distantly related to bacteriophages ΦX174, α3, and G4. A high-resolution cryo-EM structure of gokushovirus ΦEC6098 was determined, and the atomic model was built de novo . Although gokushoviruses lack external scaffolding and spike proteins, which extensively interact with the ΦX174 capsid protein, the core of the ΦEC6098 coat protein (VP1) displayed a similar structure. There are, however, key differences. At each ΦEC6098 icosahedral 3-fold axis, a long insertion loop formed mushroom-like protrusions, which have been noted in lower-resolution gokushovirus structures. Hydrophobic interfaces at the bottom of these protrusions may confer stability to the capsid shell. In ΦX174, the N-terminus of the capsid protein resides directly atop the 3-fold axes of symmetry; however, the ΦEC6098 N-terminus stretched across the inner surface of the capsid shell, reaching nearly to the 5-fold axis of the neighboring pentamer. Thus, this extended N-terminus interconnected pentamers on the inside of the capsid shell, presumably promoting capsid assembly, a function performed by the ΦX174 external scaffolding protein. There were also key differences between the ΦX174-like DNA-binding J proteins and its ΦEC6098 homologue VP8. As seen with the J proteins, C-terminal VP8 residues were bound into a pocket within the major capsid protein; however, its N-terminal residues were disordered, likely due to flexibility. We show that the combined location and interaction of VP8’s C-terminus and a portion of VP1’s N-terminus are reminiscent of those seen with the ΦX174 and α3 J proteins. IMPORTANCE There is a dramatic structural and morphogenetic divide within the Microviridae . The well-studied ΦX174-like viruses have prominent spikes at their icosahedral vertices, which are absent in gokushoviruses. Instead, gokushovirus major coat proteins form extensive mushroom-like protrusions at the 3-fold axes of symmetry. In addition, gokushoviruses lack an external scaffolding protein, the more critical of the two ΦX174 assembly proteins, but retain an internal scaffolding protein. The ΦEC6098 virion suggests that key external scaffolding functions are likely performed by coat protein domains unique to gokushoviruses. Thus, within one family, different assembly paths have been taken, demonstrating how a two-scaffolding protein system can evolve into a one-scaffolding protein system, or vice versa. 
    more » « less
  5. Electron Beam Melting (EBM) is a widespread additive manufacturing technology for metallic-part fabrication; however, final products can contain microstructural defects that reduce fatigue performance. While the effects of gas and keyhole pores are well characterized, other defects, including lack of fusion and smooth facets, warrant additional investigation given their potential to significantly impact fatigue life. Therefore, such defects were intentionally induced into EBM Ti-6Al-4V, a prevalent titanium alloy, to investigate their degradation on stress-controlled fatigue life. The focus offset processing parameter was varied outside of typical manufacturing settings to generate a variety of defect types, and specimens were tested under fatigue loading, followed by surface and microstructure characterization. Fatigue damage primarily initiated at smooth facet sites or sites consisting of un-melted powder due to a lack of fusion, and an increase in both fatigue life and void content with increasing focus offset was noted. This counter-intuitive relationship is attributed to lower focus offsets producing a microstructure more prone to smooth facets, discussed in the literature as being due to lack of fusion or cleavage fracture, and this study indicates that these smooth flaws are most likely a result of lack of fusion. 
    more » « less