skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extraordinary electrochemical stability and extended polaron delocalization of ladder-type polyaniline-analogous polymers
Electrochemical stability and delocalization of states critically impact the functions and practical applications of electronically active polymers. Incorporation of a ladder-type constitution into these polymers represents a promising strategy to enhance the aforementioned properties from a fundamental structural perspective. A series of ladder-type polyaniline-analogous polymers are designed as models to test this hypothesis and are synthesized through a facile and scalable route. Chemical and electrochemical interconversions between the fully oxidized pernigraniline state and the fully reduced leucoemeraldine state are both achieved in a highly reversible and robust manner. The protonated pernigraniline form of the ladder polymer exhibits unprecedented electrochemical stability under highly acidic and oxidative conditions, enabling the access of a near-infrared light-absorbing material with extended polaron delocalization in the solid-state. An electrochromic device composed of this ladder polymer shows distinct switching between UV- and near-infrared-absorbing states with a remarkable cyclability, meanwhile tolerating a wide operating window of 4 volts. Taken together, these results demonstrate the principle of employing a ladder-type backbone constitution to impart superior electrochemical properties into electronically active polymers.  more » « less
Award ID(s):
1808779
PAR ID:
10309558
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
47
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ladder-type structures can impart exceptional stability to polymeric electronic materials. This article introduces a new class of conductive polymers featuring a fully ladder-type backbone. A judicious molecular design strategy enables the synthesis of a low-defect ladder polymer, which can be efficiently oxidized and acid-doped to achieve its conductive state. The structural elucidation of this polymer and the characterization of its open-shell nature are facilitated with the assistance of studies on small molecular models. An autonomous robotic system is used to optimize the conductivity of the polymer thin film, achieving over 7 mS cm^−1. Impressively, this polymer demonstrates unparalleled stability in strong acid and under harsh UV-irradiation, significantly surpassing commercial benchmarks like PEDOT:PSS and polyaniline. Moreover, it displays superior durability across numerous redox cycles as the active material in an electrochromic device and as the pseudocapacitive material in a supercapacitor device. This work provides structural design guidance for durable conductive polymers for long-term device operation. 
    more » « less
  2. Conjugated polymers have been widely investigated where ladder-type conjugated polymers receive more attention due to their rigid backbones and extraordinary properties. However, the understanding of how the rigid conformation of ladder polymers translates to material properties is still limited. Here, we systematically investigated the solution aggregation properties of a carbazole-derived conjugated ladder polymer (LP) and its analogous non-ladder control polymer (CP) via light scattering, neutron scattering, and UV-vis absorption spectroscopy characterization techniques, revealing a highly robust, temperature-insensitive aggregation behavior of the LP. The experimental findings were further validated by computational molecular dynamics simulations. We found that the peak positions and intensities of the UV spectra of the LP remained constant between 20 °C and 120 °C in chlorobenzene solution. The polymer also showed a stable hydrodynamic radius measured by dynamic light scattering from 20 °C to 70 °C in the chlorobenzene solution. Using small-angle neutron scattering, no Guinier region was reached in the measured q range down to 0.008 Å −1 , even at elevated temperature. In contrast, the non-ladder control polymer CP was fully soluble in the chlorobenzene solvent without the observation of any notable aggregates. The Brownian dynamics simulation showed that during polymer aggregation, the entropy change of the LP was significantly less negative than that of the non-ladder control polymer. These findings revealed the low entropy nature of rigid conjugated ladder polymers and the low entropy penalty for their aggregation, which is promising for highly robust intermolecular interactions at high temperatures. Such a unique thermodynamic feature of rigid ladder polymers can be leveraged in the design and application of next-generation electronic and optoelectronic devices that function under unconventional high temperature conditions. 
    more » « less
  3. Abstract This study introduces a benzodithiophene‐S,S‐tetraoxide (BDTT) monomer as an acceptor and 3,4‐ethylenedioxythiophene flanked thiophene (TEDOT2) and terthiophene (T3) as donor molecules for polymer formation. The synthesis of thepoly(TEDOT2‐BDTT)andpoly(T3‐BDTT)copolymers was performed via a single‐step monomer radical formation that is typically associated with electropolymerization methods. The electropolymerization is controlled by using a suitable monomer stoichiometric ratio that enables the deposition of copolymer thin films on the working electrode. Resultant copolymers were investigated by electrochemical analysis and their electronic properties are discussed in detail. A low average electron transport resistance of 16.5 Ω was found forpoly(TEDOT2‐BDTT), indicating excellent conductive behavior. Solid‐state absorbance and emission studies of the copolymers show visible to near‐infrared spectral activity. Results support an effective strategy towards highly efficient electronically conducting polymers (ECPs) based on a unique BDTT monomer. 
    more » « less
  4. Solid-state single-ion conducting polymer electrolytes have drawn considerable interest for secondary lithium batteries due to their potential for high electrochemical stability and safety, but applications are limited by their low ionic conductivities. Specifically, poly(ethylene oxide) (PEO) based electrolytes have the highest reported Li + conductivities for these materials; however, their potential is limited due to the ion transport mechanism being coupled to segmental relaxations of the cation solvating polymer chain. To investigate the potential of single-ion conducting polymer electrolytes lacking polar matrices, we synthesized three para -polyphenylene-based, side-chain polymer electrolytes with various pendent anion chemistries (–SO 3 − , –PSI − , and –TFSI − ) with differing binding affinities to Li + . Compared with the previously reported lithium poly(4-styrenesulfonyl(trifluoromethylsulfonyl)imide) (LiPSTFSI), the side-chain polymers showed at least 3 orders of magnitude higher conductivity with the same –TFSI − anion (6.7 × 10 −6 S cm −1 compared with 1.2 × 10 −10 S cm −1 at 150 °C). We found that the side-chain electrolyte showed a dielectric relaxation dominated transport mechanism through use of dielectric spectroscopy analysis. The conductivity is highly dependent on the charge delocalization and size of the pendent anion, which provides a pathway forward for the engineering of polymeric ion conductors for electrochemical applications. 
    more » « less
  5. Redox-active polymers serving as the active materials in solid-state electrodes offer a promising path toward realizing all-organic batteries. While both cathodic and anodic redox-active polymers are needed, the diversity of the available anodic materials is limited. Here, we predict solid-state structural, ionic, and electronic properties of anodic, phthalimide-containing polymers using a multiscale approach that combines atomistic molecular dynamics, electronic structure calculations, and machine learning surrogate models. Importantly, by combining information from each of these scales, we are able to bridge the gap between bottom-up molecular characteristics and macroscopic properties such as apparent diffusion coefficients of electron transport (Dapp). We investigate the impact of different polymer backbones and of two critical factors during battery operation: state of charge and polymer swelling. Our findings reveal that the state of charge significantly influences solid-state packing and the thermophysical properties of the polymers, which, in turn, affect ionic and electronic transport. A combination of molecular-level properties (such as the reorganization energy) and condensed-phase properties (such as effective electron hopping distances) determine the predicted ranking of electron transport capabilities of the polymers. We predict Dapp for the phthalimide-based polymers and for a reference nitroxide radical-based polymer, finding a 3 orders of magnitude increase in Dapp (≈10–6 cm2 s–1) with respect to the reference. This study underscores the promise of phthalimide-containing polymers as highly capable redox-active polymers for anodic materials in all-organic batteries, due to their exceptional predicted electron transport capabilities. 
    more » « less