skip to main content


Title: Robust chain aggregation of low-entropy rigid ladder polymers in solution
Conjugated polymers have been widely investigated where ladder-type conjugated polymers receive more attention due to their rigid backbones and extraordinary properties. However, the understanding of how the rigid conformation of ladder polymers translates to material properties is still limited. Here, we systematically investigated the solution aggregation properties of a carbazole-derived conjugated ladder polymer (LP) and its analogous non-ladder control polymer (CP) via light scattering, neutron scattering, and UV-vis absorption spectroscopy characterization techniques, revealing a highly robust, temperature-insensitive aggregation behavior of the LP. The experimental findings were further validated by computational molecular dynamics simulations. We found that the peak positions and intensities of the UV spectra of the LP remained constant between 20 °C and 120 °C in chlorobenzene solution. The polymer also showed a stable hydrodynamic radius measured by dynamic light scattering from 20 °C to 70 °C in the chlorobenzene solution. Using small-angle neutron scattering, no Guinier region was reached in the measured q range down to 0.008 Å −1 , even at elevated temperature. In contrast, the non-ladder control polymer CP was fully soluble in the chlorobenzene solvent without the observation of any notable aggregates. The Brownian dynamics simulation showed that during polymer aggregation, the entropy change of the LP was significantly less negative than that of the non-ladder control polymer. These findings revealed the low entropy nature of rigid conjugated ladder polymers and the low entropy penalty for their aggregation, which is promising for highly robust intermolecular interactions at high temperatures. Such a unique thermodynamic feature of rigid ladder polymers can be leveraged in the design and application of next-generation electronic and optoelectronic devices that function under unconventional high temperature conditions.  more » « less
Award ID(s):
2003733 2004133
NSF-PAR ID:
10351576
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
ISSN:
2050-7526
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Thermomechanical properties of polymers highly depend on their glass transition temperature (Tg). Differential scanning calorimetry (DSC) is commonly used to measureTgof polymers. However, many conjugated polymers (CPs), especially donor–acceptor CPs (D–A CPs), do not show a clear glass transition when measured by conventional DSC using simple heat and cool scan. In this work, we discuss the origin of the difficulty for measuringTgin such type of polymers. The changes in specific heat capacity (Δcp) atTgwere accurately probed for a series of CPs by DSC. The results showed a significant decrease in Δcpfrom flexible polymer (0.28 J g−1K−1for polystyrene) to rigid CPs (10−3J g−1K−1for a naphthalene diimide‐based D–A CP). When a conjugation breaker unit (flexible unit) is added to the D–A CPs, we observed restoration of the ΔcpatTgby a factor of 10, confirming that backbone rigidity reduces the Δcp. Additionally, an increase in the crystalline fraction of the CPs further reduces Δcp. We conclude that the difficulties of determiningTgfor CPs using DSC are mainly due to rigid backbone and semicrystalline nature. We also demonstrate that physical aging can be used on DSC to help locate and confirm the glass transition for D‐A CPs with weak transition signals. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1635–1644

     
    more » « less
  2. Abstract

    Wearable devices benefit from the use of stretchable conjugated polymers (CPs). Traditionally, the design of stretchable CPs is based on the assumption that a low elastic modulus (E) is crucial for achieving high stretchability. However, this research, which analyzes the mechanical properties of 65 CP thin films, challenges this notion. It is discovered that softness alone does not determine stretchability; rather, it is the degree of entanglement that is critical. This means that rigid CPs can also exhibit high stretchability, contradicting conventional wisdom. To inverstigate further, the mechanical behavior, electrical properties, and deformation mechanism of two model CPs: a glassy poly(3‐butylthiophene‐2,5‐diyl) (P3BT) with anEof 2.2 GPa and a viscoelastic poly(3‐octylthiophene‐2,5‐diyl) (P3OT) with anEof 86 MPa, are studied. Ex situ transmission X‐ray scattering and polarized UV–vis spectroscopy revealed that only the initial strain (i.e., <20%) exhibits different chain alignment mechanisms between two polymers, while both rigid and soft P3ATs showed similarly behavior at larger strains. By challenging the conventional design metric of lowEfor high stretchability and highlighting the importance of entanglement, it is hoped to broaden the range of CPs available for use in wearable devices.

     
    more » « less
  3. Abstract

    Conjugated polymers consist of complex backbone structures and side‐chain moieties to meet various optoelectronic and processing requirements. Recent work on conjugated polymers has been devoted to studying the mechanical properties and developing new conjugated polymers with low modulus and high‐crack onset strain, while the thin film mechanical stability under long‐term external tensile strain is less investigated. Here we performed direct mechanical stress relaxation tests for both free‐standing and thin film floated on water surface on both high‐Tgand low‐Tgconjugated polymers, as well as a reference nonconjugated sample, polystyrene. We measured thin films with a range of film thickness from 38 to 179 nm to study the temperature and thickness effect on thin film relaxation, where an apparent enthalpy–entropy compensation effect for glassy polymer PS and PM6 thin films was observed. We also compared relaxation times across three different conjugated polymers and showed that both crystalline morphology and higher modulus reduce the relaxation rate besides higher glass transition temperature. Our work provides insights into the mechanical creep behavior of conjugated polymers, which will have an impact on the future design of stable functional organic electronics.

     
    more » « less
  4. Abstract

    Conjugated polymers (CPs), characterized by rigid conjugation backbones and flexible peripheral side chains, hold significant promise in various organic optoelectronic applications. In this study, we employ coarse‐grained molecular dynamics (CG‐MD) simulations to investigate the intricate interplay of solvent quality, temperature, and chain architecture (e.g., side‐chain length and molecular mass) on the conformational behaviors of CPs in dilute solutions. Our research uncovers distinctive conformational behaviors under varying solvent conditions, highlighting the versatile nature of polymer chains, which can adopt extended configurations in good solvents and transition to aggregated states in poor solvents. Additionally, the mass scaling exponent , a robust structural descriptor, consistently described CPs behavior across diverse architectures and solvent conditions. Furthermore, our study shows that a CP with longer side‐chain exhibits improved solubility, which is further confirmed by experimental observations. Moreover, our analysis of the shape descriptor provided valuable insights into the symmetry and dimensionality of CPs under varying solvent conditions. These findings offer a comprehensive understanding of conformational behaviors of CPs in dilute solution, which are helpful in guiding the conformational design of polymer for specific applications.

     
    more » « less
  5. Abstract

    Persistence length is commonly used to quantitatively describe the chain rigidity of macromolecules, which represents an important structural parameter governing many physical properties of polymers. Although the mathematical models and experimental measurements on the chain rigidity of conventional single stranded polymers have been well explored and documented, those of the more rigid yet highly intriguing multiple stranded polymers, especially conjugated ladder polymers, are yet not well established. This article introduces the fundamental concepts on macromolecular chain rigidity, as well as the corresponding experimental methods, models, and simulations. Subsequently, representative examples of works done on the chain rigidity of nonladder conjugated polymers and conjugated ladder polymers are reviewed. Last but not least, it provides outlooks on the challenges with respect to the less‐investigated chain rigidity of conjugated ladder polymers, including new models to describe and predict chain conformation, synthetic control on structural defects, and insights into the correlation of rigidity and applications.

     
    more » « less