skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatiotemporal variability of global river extent and the natural driving factors revealed by decades of Landsat observations, GRACE gravimetry observations, and land surface model simulations
Award ID(s):
1802872
PAR ID:
10309599
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing of Environment
Volume:
267
Issue:
C
ISSN:
0034-4257
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. We study the problem of efficiently estimating the effect of an intervention on a single variable using observational samples. Our goal is to give algorithms with polynomial time and sample complexity in a non-parametric setting. Tian and Pearl (AAAI ’02) have exactly characterized the class of causal graphs for which causal effects of atomic interventions can be identified from observational data. We make their result quantitative. Suppose 𝒫 is a causal model on a set V of n observable variables with respect to a given causal graph G, and let do(x) be an identifiable intervention on a variable X. We show that assuming that G has bounded in-degree and bounded c-components (k) and that the observational distribution satisfies a strong positivity condition: (i) [Evaluation] There is an algorithm that outputs with probability 2/3 an evaluator for a distribution P^ that satisfies TV(P(V | do(x)), P^(V)) < eps using m=O (n/eps^2) samples from P and O(mn) time. The evaluator can return in O(n) time the probability P^(v) for any assignment v to V. (ii) [Sampling] There is an algorithm that outputs with probability 2/3 a sampler for a distribution P^ that satisfies TV(P(V | do(x)), P^(V)) < eps using m=O (n/eps^2) samples from P and O(mn) time. The sampler returns an iid sample from P^ with probability 1 in O(n) time. We extend our techniques to estimate P(Y | do(x)) for a subset Y of variables of interest. We also show lower bounds for the sample complexity, demonstrating that our sample complexity has optimal dependence on the parameters n and eps, as well as if k=1 on the strong positivity parameter. 
    more » « less