skip to main content


Title: Genetic, morphometric, and molecular analyses of interspecies differences in head shape and hybrid developmental defects in the wasp genus Nasonia
Abstract Males in the parasitoid wasp genus Nasonia have distinct, species-specific, head shapes. The availability of fertile hybrids among the species, along with obligate haploidy of males, facilitates analysis of complex gene interactions in development and evolution. Previous analyses showed that both the divergence in head shape between Nasonia vitripennis and Nasonia giraulti, and the head-specific developmental defects of F2 haploid hybrid males, are governed by multiple changes in networks of interacting genes. Here, we extend our understanding of the gene interactions that affect morphogenesis in male heads. Use of artificial diploid male hybrids shows that alleles mediating developmental defects are recessive, while there are diverse dominance relationships among other head shape traits. At the molecular level, the sex determination locus doublesex plays a major role in male head shape differences, but it is not the only important factor. Introgression of a giraulti region on chromsome 2 reveals a recessive locus that causes completely penetrant head clefting in both males and females in a vitripennis background. Finally, a third species (N. longicornis) was used to investigate the timing of genetic changes related to head morphology, revealing that most changes causing defects arose after the divergence of N. vitripennis from the other species, but prior to the divergence of N. giraulti and N. longicornis from each other. Our results demonstrate that developmental gene networks can be dissected using interspecies crosses in Nasonia, and set the stage for future fine-scale genetic dissection of both head shape and hybrid developmental defects.  more » « less
Award ID(s):
1950078 1456233
NSF-PAR ID:
10309642
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Lott, S
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
Volume:
11
Issue:
12
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Polymorphisms for melanic form of insects may provide various selective advantages. However, melanic alleles may have significant/subtle pleiotrophic “costs.” Several potential pleiotrophic effects of the W (=Y)‐linked melanism gene inPapilio glaucusL. (Lepidoptera) showed no costs for melanic versus yellow in adult size, oviposition preferences, fecundity, egg viability, larval survival/growth rates, cold stress tolerance, or postdiapause emergence times. Sexual selection (males choosing yellow rather than mimetic dark females) had been suggested to provide a balanced polymorphism inP. glaucus, but spermatophore counts in wild females and direct field tethering studies of size‐matched pairs of virgin females (dark and yellow), show that male preferences are random or frequency‐dependent from Florida to Michigan, providing no yellow counter‐advantages. Recent frequency declines of dark (melanic/mimetic) females inP. glaucuspopulations are shown in several major populations from Florida (27.3°N latitude) to Ohio (38.5° N). Summer temperatures have increased significantly at all these locations during this time (1999–2018), but whether dark morphs may be more vulnerable (in any stage) to such climate warming remains to be determined. Additional potential reasons for the frequency declines in mimetic females are discussed: (i) genetic introgression of Z‐linked melanism suppressor genes fromP. canadensis(R & J) and the hybrid species,P. appalachiensis(Pavulaan & Wright), (ii) differential developmental incompatibilities, or Haldane effects, known to occur in hybrids, (iii) selection against intermediately melanic (“dusty”) females (with the W‐linked melanic gene, b+) which higher temperatures can cause.

     
    more » « less
  2. Katz, Laura A (Ed.)
    Abstract Sterility among hybrids is one of the most prevalent forms of reproductive isolation delineating species boundaries and is expressed disproportionately in heterogametic XY males. While hybrid male sterility (HMS) due to the “large X effect” is a well-recognized mechanism of reproductive isolation, it is less clear how HMS manifests in species that lack heteromorphic sex chromosomes. We evaluated differences in allele frequencies at approximately 460,000 SNPs between fertile and sterile F2 interpopulation male hybrids to characterize the genomic architecture of HMS in a species without sex chromosomes (Tigriopus californicus). We tested associations between HMS and mitochondrial-nuclear and/or nuclear-nuclear signatures of incompatibility. Genomic regions associated with HMS were concentrated on a single chromosome with the same primary 2-Mbp regions identified in one pair of reciprocal crosses. Gene Ontology analysis revealed that annotations associated with spermatogenesis were the most overrepresented within the implicated region, with nine protein-coding genes connected with this process found in the quantitative trait locus of chromosome 2. Our results indicate that a narrow genomic region was associated with the sterility of male hybrids in T. californicus and suggest that incompatibilities among select nuclear loci may replace the large X effect when sex chromosomes are absent. 
    more » « less
  3. Abstract

    Hybrid sterility is a complex phenotype that can result from the breakdown of spermatogenesis at multiple developmental stages. Here, we disentangle two proposed hybrid male sterility mechanisms in the house mice, Mus musculus domesticus and M. m. musculus, by comparing patterns of gene expression in sterile F1 hybrids from a reciprocal cross. We found that hybrid males from both cross directions showed disrupted X chromosome expression during prophase of meiosis I consistent with a loss of meiotic sex chromosome inactivation (MSCI) and Prdm9-associated sterility, but that the degree of disruption was greater in mice with an M. m. musculus X chromosome consistent with previous studies. During postmeiotic development, gene expression on the X chromosome was only disrupted in one cross direction, suggesting that misexpression at this later stage was genotype-specific and not a simple downstream consequence of MSCI disruption which was observed in both reciprocal crosses. Instead, disrupted postmeiotic expression may depend on the magnitude of earlier disrupted MSCI, or the disruption of particular X-linked genes or gene networks. Alternatively, only hybrids with a potential deficit of Sly copies, a Y-linked ampliconic gene family, showed overexpression in postmeiotic cells, consistent with a previously proposed model of antagonistic coevolution between the X- and Y-linked ampliconic genes contributing to disrupted expression late in spermatogenesis. The relative contributions of these two regulatory mechanisms and their impact on sterility phenotypes await further study. Our results further support the hypothesis that X-linked hybrid sterility in house mice has a variable genetic basis, and that genotype-specific disruption of gene regulation contributes to overexpression of the X chromosome at different stages of development. Overall, these findings underscore the critical role of epigenetic regulation of the X chromosome during spermatogenesis and suggest that these processes are prone to disruption in hybrids.

     
    more » « less
  4. Abstract

    Interactions between extrinsic factors, such as disruptive selection and intrinsic factors, such as genetic incompatibilities among loci, often contribute to the maintenance of species boundaries. The relative roles of these factors in the establishment of reproductive isolation can be examined using species pairs characterized by gene flow throughout their divergence history. We investigated the process of speciation and the maintenance of species boundaries betweenPinus strobiformisandPinus flexilis. Utilizing ecological niche modelling, demographic modelling and genomic cline analyses, we illustrated a divergence history with continuous gene flow. Our results supported an abundance of advanced generation hybrids and a lack of loci exhibiting steep transition in allele frequency across the hybrid zone. Additionally, we found evidence for climate‐associated variation in the hybrid index and niche divergence between parental species and the hybrid zone. These results are consistent with extrinsic factors, such as climate, being an important isolating mechanism. A build‐up of intrinsic incompatibilities and of coadapted gene complexes is also apparent, although these appear to be in the earliest stages of development. This supports previous work in coniferous species demonstrating the importance of extrinsic factors in facilitating speciation. Overall, our findings lend support to the hypothesis that varying strength and direction of selection pressures across the long lifespans of conifers, in combination with their other life history traits, delays the evolution of strong intrinsic incompatibilities.

     
    more » « less
  5. Barbash, D A (Ed.)
    Abstract Embryonic development in mammals is highly sensitive to changes in gene expression within the placenta. The placenta is also highly enriched for genes showing parent-of-origin or imprinted expression, which is predicted to evolve rapidly in response to parental conflict. However, little is known about the evolution of placental gene expression, or if divergence of placental gene expression plays an important role in mammalian speciation. We used crosses between two species of dwarf hamsters (Phodopus sungorus and Phodopus campbelli) to examine the genetic and regulatory underpinnings of severe placental overgrowth in their hybrids. Using quantitative genetic mapping and mitochondrial substitution lines, we show that overgrowth of hybrid placentas was primarily caused by genetic differences on the maternally inherited P. sungorus X chromosome. Mitochondrial interactions did not contribute to abnormal hybrid placental development, and there was only weak correspondence between placental disruption and embryonic growth. Genome-wide analyses of placental transcriptomes from the parental species and first- and second-generation hybrids revealed a central group of co-expressed X-linked and autosomal genes that were highly enriched for maternally biased expression. Expression of this gene network was strongly correlated with placental size and showed widespread misexpression dependent on epistatic interactions with X-linked hybrid incompatibilities. Collectively, our results indicate that the X chromosome is likely to play a prominent role in the evolution of placental gene expression and the accumulation of hybrid developmental barriers between mammalian species. 
    more » « less