skip to main content


This content will become publicly available on June 1, 2024

Title: Genomic Architecture of Hybrid Male Sterility in a Species Without Sex Chromosomes ( Tigriopus californicus , Copepoda: Harpacticoida)
Abstract Sterility among hybrids is one of the most prevalent forms of reproductive isolation delineating species boundaries and is expressed disproportionately in heterogametic XY males. While hybrid male sterility (HMS) due to the “large X effect” is a well-recognized mechanism of reproductive isolation, it is less clear how HMS manifests in species that lack heteromorphic sex chromosomes. We evaluated differences in allele frequencies at approximately 460,000 SNPs between fertile and sterile F2 interpopulation male hybrids to characterize the genomic architecture of HMS in a species without sex chromosomes (Tigriopus californicus). We tested associations between HMS and mitochondrial-nuclear and/or nuclear-nuclear signatures of incompatibility. Genomic regions associated with HMS were concentrated on a single chromosome with the same primary 2-Mbp regions identified in one pair of reciprocal crosses. Gene Ontology analysis revealed that annotations associated with spermatogenesis were the most overrepresented within the implicated region, with nine protein-coding genes connected with this process found in the quantitative trait locus of chromosome 2. Our results indicate that a narrow genomic region was associated with the sterility of male hybrids in T. californicus and suggest that incompatibilities among select nuclear loci may replace the large X effect when sex chromosomes are absent.  more » « less
Award ID(s):
1754347 1556466 2109676
NSF-PAR ID:
10437324
Author(s) / Creator(s):
; ; ;
Editor(s):
Katz, Laura A
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
15
Issue:
6
ISSN:
1759-6653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Haldane’s rule—a pattern in which hybrid sterility or inviability is observed in the heterogametic sex of an interspecific cross—is one of the most widely obeyed rules in nature. Because inheritance patterns are similar for sex chromosomes and haplodiploid genomes, Haldane’s rule may apply to haplodiploid taxa, predicting that haploid male hybrids will evolve sterility or inviability before diploid female hybrids. However, there are several genetic and evolutionary mechanisms that may reduce the tendency of haplodiploids to obey Haldane’s rule. Currently, there are insufficient data from haplodiploids to determine how frequently they adhere to Haldane’s rule. To help fill this gap, we crossed a pair of haplodiploid hymenopteran species (Neodiprion lecontei and Neodiprion pinetum) and evaluated the viability and fertility of female and male hybrids. Despite considerable divergence, we found no evidence of reduced fertility in hybrids of either sex, consistent with the hypothesis that hybrid sterility evolves slowly in haplodiploids. For viability, we found a pattern opposite of Haldane’s rule: hybrid females, but not males, had reduced viability. This reduction was most pronounced in one direction of the cross, possibly due to a cytoplasmic-nuclear incompatibility. We also found evidence of extrinsic postzygotic isolation in hybrids of both sexes, raising the possibility that this form or reproductive isolation tends to emerge early in speciation in host-specialized insects. Our work emphasizes the need for more studies on reproductive isolation in haplodiploids, which are abundant in nature, but under-represented in the speciation literature. 
    more » « less
  2. Abstract

    Incompatibilities on the sex chromosomes are important in the evolution of hybrid male sterility, but the evolutionary forces underlying this phenomenon are unclear. House mice (Mus musculus) lineages have provided powerful models for understanding the genetic basis of hybrid male sterility. X chromosome–autosome interactions cause strong incompatibilities in M. musculus F1 hybrids, but variation in sterility phenotypes suggests a more complex genetic basis. In addition, XY chromosome conflict has resulted in rapid expansions of ampliconic genes with dosage-dependent expression that is essential to spermatogenesis. Here, we evaluated the contribution of XY lineage mismatch to male fertility and stage-specific gene expression in hybrid mice. We performed backcrosses between two house mouse subspecies to generate reciprocal Y-introgression strains and used these strains to test the effects of XY mismatch in hybrids. Our transcriptome analyses of sorted spermatid cells revealed widespread overexpression of the X chromosome in sterile F1 hybrids independent of Y chromosome subspecies origin. Thus, postmeiotic overexpression of the X chromosome in sterile F1 mouse hybrids is likely a downstream consequence of disrupted meiotic X-inactivation rather than XY gene copy number imbalance. Y chromosome introgression did result in subfertility phenotypes and disrupted expression of several autosomal genes in mice with an otherwise nonhybrid genomic background, suggesting that Y-linked incompatibilities contribute to reproductive barriers, but likely not as a direct consequence of XY conflict. Collectively, these findings suggest that rapid sex chromosome gene family evolution driven by genomic conflict has not resulted in strong male reproductive barriers between these subspecies of house mice.

     
    more » « less
  3. Abstract

    Reproductive isolation is often achieved when genes that are neutral or beneficial in their genomic background become functionally incompatible in a foreign genomic background, causing inviability, sterility or other forms of low fitness in hybrids. Recent studies suggest that mitonuclear interactions are among the initial incompatibilities to evolve at early stages of population divergence across taxa. Yet, the genomic architecture of mitonuclear incompatibilities has rarely been elucidated. We employ an experimental evolution approach starting with low‐fitness F2interpopulation hybrids of the copepodTigriopus californicus, in which frequencies of compatible and incompatible nuclear alleles change in response to an alternative mitochondrial background. After about nine generations, we observe a generalized increase in population size and in survivorship, suggesting efficiency of selection against maladaptive phenotypes. Whole genome sequencing of evolved populations showed some consistent allele frequency changes across three replicates of each reciprocal cross, but markedly different patterns between mitochondrial backgrounds. In only a few regions (~6.5% of the genome), the same parental allele was overrepresented irrespective of the mitochondrial background. About 33% of the genome showed allele frequency changes consistent with divergent selection, with the location of these genomic regions strongly differing between mitochondrial backgrounds. In 87% and 89% of these genomic regions, the dominant nuclear allele matched the associated mitochondrial background, consistent with mitonuclear co‐adaptation. These results suggest that mitonuclear incompatibilities have a complex polygenic architecture that differs between populations, potentially generating genome‐wide barriers to gene flow between closely related taxa.

     
    more » « less
  4. Mating cues evolve rapidly and can contribute to species formation and maintenance. However, little is known about how sexual signals diverge and how this variation integrates with other barrier loci to shape the genomic landscape of reproductive isolation. Here, we elucidate the genetic basis of ultraviolet (UV) iridescence, a courtship signal that differentiates the males of Colias eurytheme butterflies from a sister species, allowing females to avoid costly heterospecific matings. Anthropogenic range expansion of the two incipient species established a large zone of secondary contact across the eastern United States with strong signatures of genomic admixtures spanning all autosomes. In contrast, Z chromosomes are highly differentiated between the two species, supporting a disproportionate role of sex chromosomes in speciation known as the large-X (or large-Z) effect. Within this chromosome-wide reproductive barrier, linkage mapping indicates that cis- regulatory variation of bric a brac ( bab ) underlies the male UV-iridescence polymorphism between the two species. Bab is expressed in all non-UV scales, and butterflies of either species or sex acquire widespread ectopic iridescence following its CRISPR knockout, demonstrating that Bab functions as a suppressor of UV-scale differentiation that potentiates mating cue divergence. These results highlight how a genetic switch can regulate a premating signal and integrate with other reproductive barriers during intermediate phases of speciation. 
    more » « less
  5. Abstract

    Fish have evolved a variety of sex‐determining (SD) systems including male heterogamy (XY), female heterogamy (ZW) and environmental SD. Little is known about SD mechanisms ofSebastesrockfishes, a highly speciose genus of importance to evolutionary and conservation biology. Here, we characterize the sex determination system in the sympatrically distributed sister speciesSebastes chrysomelasandSebastes carnatus. To identify sex‐specific genotypic markers, double digest restriction site – associated DNA sequencing (ddRAD‐seq) of genomic DNA from 40 sexed individuals of both species was performed. Loci were filtered for presence in all of the individuals of one sex, absence in the other sex and no heterozygosity. Of the 74 965 loci present in all males, 33 male‐specific loci met the criteria in at least one species and 17 in both. Conversely, no female‐specific loci were detected, together providing evidence of an XY sex determination system in both species. When aligned to a draft reference genome fromSebastes aleutianus, 26 sex‐specific loci were interspersed among 1168 loci that were identical between sexes. The nascent Y chromosome averaged 5% divergence from the X chromosome and mapped to referenceSebastesgenome scaffolds totalling 6.9Mbp in length. These scaffolds aligned to a single chromosome in three model fish genomes. Read coverage differences were also detected between sex‐specific and autosomal loci. A PCR‐RFLP assay validated the bioinformatic results and correctly identified sex of five additional individuals of known sex. A sex‐determining gene in other teleostsgonadal soma‐derived factor(gsdf) was present in the model fish chromosomes that spanned our sex‐specific markers.

     
    more » « less