We exploit the different but complementary data sensitivities of ground-penetrating radar (GPR) and electrical resistivity (ER) by applying a multiphysics, multiparameter, simultaneous 2.5D joint inversion without invoking petrophysical relationships. Our method joins full-waveform inversion (FWI) GPR with adjoint derived ER sensitivities on the same computational domain. We incorporate a stable source estimation routine into the FWI-GPR. We apply our method in a controlled alluvial aquifer using only surface-acquired data. The site exhibits a shallow groundwater boundary and unconsolidated heterogeneous alluvial deposits. We compare our recovered parameters to individual FWI-GPR and ER results, and we compare them to log measurements of capacitive conductivity and neutron-derived porosity. Our joint inversion provides a more representative depiction of subsurface structures because it incorporates multiple intrinsic parameters, and it is therefore superior to an interpretation based on log data, FWI-GPR, or ER alone.
more »
« less
Efficient inversion of 2.5D electrical resistivity data using the discrete adjoint method
We have developed a memory and operation-count efficient 2.5D inversion algorithm of electrical resistivity (ER) data that can handle fine discretization domains imposed by other geophysical (e.g, ground penetrating radar or seismic) data. Due to numerical stability criteria and available computational memory, joint inversion of different types of geophysical data can impose different grid discretization constraints on the model parameters. Our algorithm enables the ER data sensitivities to be directly joined with other geophysical data without the need of interpolating or coarsening the discretization. We have used the adjoint method directly in the discretized Maxwell’s steady state equation to compute the data sensitivity to the conductivity. In doing so, we make no finite-difference approximation on the Jacobian of the data and avoid the need to store large and dense matrices. Rather, we exploit matrix-vector multiplication of sparse matrices and find successful convergence using gradient descent for our inversion routine without having to resort to the Hessian of the objective function. By assuming a 2.5D subsurface, we are able to linearly reduce memory requirements when compared to a 3D gradient descent inversion, and by a power of two when compared to storing a 2D Hessian. Moreover, our method linearly outperforms operation counts when compared with 3D Gauss-Newton conjugate-gradient schemes, which scales cubically in our favor with respect to the thickness of the 3D domain. We physically appraise the domain of the recovered conductivity using a cutoff of the electric current density present in our survey. We evaluate two case studies to assess the validity of our algorithm. First, on a 2.5D synthetic example, and then on field data acquired in a controlled alluvial aquifer, where we were able to match the recovered conductivity to borehole observations.
more »
« less
- Award ID(s):
- 1720472
- PAR ID:
- 10309730
- Date Published:
- Journal Name:
- GEOPHYSICS
- Volume:
- 86
- Issue:
- 3
- ISSN:
- 0016-8033
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We have developed an algorithm for joint inversion of full-waveform ground-penetrating radar (GPR) and electrical resistivity (ER) data. The GPR data are sensitive to electrical permittivity through reflectivity and velocity, and electrical conductivity through reflectivity and attenuation. The ER data are directly sensitive to the electrical conductivity. The two types of data are inherently linked through Maxwell’s equations, and we jointly invert them. Our results show that the two types of data work cooperatively to effectively regularize each other while honoring the physics of the geophysical methods. We first compute sensitivity updates separately for the GPR and ER data using the adjoint method, and then we sum these updates to account for both types of sensitivities. The sensitivities are added with the paradigm of letting both data types always contribute to our inversion in proportion to how well their respective objective functions are being resolved in each iteration. Our algorithm makes no assumptions of the subsurface geometry nor the structural similarities between the parameters with the caveat of needing a good initial model. We find that our joint inversion outperforms the GPR and ER separate inversions, and we determine that GPR effectively supports ER in regions of low conductivity, whereas ER supports GPR in regions with strong attenuation.more » « less
-
null (Ed.)We present a direct (primal only) derivation of Mirror Descent as a “partial” discretization of gradient flow on a Riemannian manifold where the metric tensor is the Hessian of the Mirror Descent potential function. We contrast this discretization to Natural Gradient Descent, which is obtained by a “full” forward Euler discretization. This view helps shed light on the relationship between the methods and allows generalizing Mirror Descent to any Riemannian geometry in Rd, even when the metric tensor is not a Hessian, and thus there is no “dual.”more » « less
-
SUMMARY A fast algorithm for the large-scale joint inversion of gravity and magnetic data is developed. The algorithm uses a non-linear Gramian constraint to impose correlation between the density and susceptibility of the reconstructed models. The global objective function is formulated in the space of the weighted parameters, but the Gramian constraint is implemented in the original space, and the non-linear constraint is imposed using two separate Lagrange parameters, one for each model domain. It is significant that this combined approach, using the two spaces provides more similarity between the reconstructed models. Moreover, it is shown theoretically that the gradient for the use of the unweighted space is not a scalar multiple of that used for the weighted space, and hence cannot be accounted for by adjusting the Lagrange parameters. It is assumed that the measured data are obtained on a uniform grid and that a consistent regular discretization of the volume domain is imposed. Then, the sensitivity matrices exhibit a block-Toeplitz-Toeplitz-block structure for each depth layer of the model domain, and both forward and transpose operations with the matrices can be implemented efficiently using two dimensional fast Fourier transforms. This makes it feasible to solve for large scale problems with respect to both computational costs and memory demands, and to solve the non-linear problem by applying iterative methods that rely only on matrix–vector multiplications. As such, the use of the regularized reweighted conjugate gradient algorithm, in conjunction with the structure of the sensitivity matrices, leads to a fast methodology for large-scale joint inversion of geophysical data sets. Numerical simulations demonstrate that it is possible to apply a non-linear joint inversion algorithm, with Lp-norm stabilisers, for the reconstruction of large model domains on a standard laptop computer. It is demonstrated, that while the p = 1 choice provides sparse reconstructed solutions with sharp boundaries, it is also possible to use p = 2 in order to provide smooth and blurred models. The methodology is used for inverting gravity and magnetic data obtained over an area in northwest of Mesoproterozoic St Francois Terrane, southeast of Missouri, USA.more » « less
-
Stein variational gradient descent (SVGD) is a particle-based inference algorithm that leverages gradient information for efficient approximate inference. In this work, we enhance SVGD by leveraging preconditioning matrices, such as the Hessian and Fisher information matrix, to incorporate geometric information into SVGD updates. We achieve this by presenting a generalization of SVGD that replaces the scalar-valued kernels in vanilla SVGD with more general matrix-valued kernels. This yields a significant extension of SVGD, and more importantly, allows us to flexibly incorporate various preconditioning matrices to accelerate the exploration in the probability landscape. Empirical results show that our method outperforms vanilla SVGD and a variety of baseline approaches over a range of real-world Bayesian inference tasks.more » « less
An official website of the United States government

