Analytic representation formulas and power series are developed describing the band structure inside non-magnetic periodic photonic three-dimensional crystals made from high dielectric contrast inclusions. Central to this approach is the identification and utilization of a resonance spectrum for quasiperiodic source-free modes. These modes are used to represent solution operators associated with electromagnetic and acoustic waves inside periodic high contrast media. A convergent power series for the Bloch wave spectrum is recovered from the representation formulas. Explicit conditions on the contrast are found that provide lower bounds on the convergence radius. These conditions are sufficient for the separation of spectral branches of the dispersion relation for any fixed quasi-momentum.
more »
« less
Bloch Spectra for High Contrast Elastic Media
Analytic representation formulas and power series are developed to describe the band struc- ture inside periodic elastic crystals made from high contrast inclusions. We use source free modes associated with structural spectra to represent the solution operator of the Lam ́e system inside phononic crystals. Convergent power series for the Bloch wave spectrum are obtained using the representation formulas. An explicit bound on the convergence radius is given through the structural spectra of the inclusion array and the Dirichlet spectra of the inclusions. Suffi- cient conditions for the separation of spectral branches of the dispersion relation for any fixed quasi-momentum are identified. A condition is found that is sufficient for the emergence of band gaps.
more »
« less
- PAR ID:
- 10309737
- Date Published:
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Analytic representation formulas and power series are developed describing the band structure inside non-magnetic periodic photonic three-dimensional crystals made from high dielectric contrast inclusions. Central to this approach is the identification and utilization of a resonance spectrum for quasiperiodic source-free modes. These modes are used to represent solution operators associated with electromagnetic and acoustic waves inside periodic high contrast media. A convergent power series for the Bloch wave spectrum is recovered from the representation formulas. Explicit conditions on the contrast are found that provide lower bounds on the convergence radius. These conditions are sufficient for the separation of spectral branches of the dispersion relation for any fixed quasi-momentum.more » « less
-
Inclusions of basaltic melt trapped inside of olivine phenocrysts during igneous crystallization provide a rich, crystal-scale record of magmatic processes ranging from mantle melting to ascent, eruption, and quenching of magma during volcanic eruptions. Melt inclusions are particularly valuable for retaining information on volatiles such as H 2 O and CO 2 that are normally lost by vesiculation and degassing as magma ascends and erupts. However, the record preserved in melt inclusions can be variably obscured by postentrapment processes, and thus melt inclusion research requires careful evaluation of the effects of such processes. Here we review processes by which melt inclusions are trapped and modified after trapping, describe new opportunities for studying the rates of magmatic and volcanic processes over a range of timescales using the kinetics of post-trapping processes, and describe recent developments in the use of volatile contents of melt inclusions to improve our understanding of how volcanoes work. ▪ Inclusions of silicate melt (magma) trapped inside of crystals formed by magma crystallization provide a rich, detailed record of what happens beneath volcanoes. ▪ These inclusions record information ranging from how magma forms deep inside Earth to its final hours as it ascends to the surface and erupts. ▪ The melt inclusion record, however, is complex and hazy because of many processes that modify the inclusions after they become trapped in crystals. ▪ Melt inclusions provide a primary archive of dissolved gases in magma, which are the key ingredients that make volcanoes erupt explosively.more » « less
-
Cubic boron nitride (cBN) is a relatively less studied wide bandgap semiconductor despite its many promising mechanical, thermal, and electronic properties. We report on the electronic, structural, and optical characterization of commercial cBN crystal platelets. Temperature dependent transport measurements revealed the charge limited diode behavior of the cBN crystals. The equilibrium Fermi level was determined to be 0.47 eV below the conduction band, and the electron conduction was identified as n-type. Unirradiated dark and amber colored cBN crystals displayed broad photoluminescence emission peaks centered around different wavelengths. RC series zero phonon line defect emission peaks were observed at room temperature from the electron beam irradiated and oxygen ion implanted cBN crystals, making this material a promising candidate for high power microwave devices, next generation power electronics, and future quantum sensing applications.more » « less
-
Abstract Raman spectroscopy is widely used to identify mineral and fluid inclusions in host crystals, as well as to calculate pressure-temperature (P-T) conditions with mineral inclusion elastic thermobarometry, for example quartz-in-garnet barometry (QuiG) and zircon-in-garnet thermometry (ZiG). For thermobarometric applications, P-T precision and accuracy depend crucially on the reproducibility of Raman peak position measurements. In this study, we monitored long-term instrument stability and varied analytical parameters to quantify peak position reproducibility for Raman spectra from quartz and zircon inclusions and reference crystals. Our ultimate goal was to determine the reproducibility of calculated inclusion pressures (“Pinc”) and entrapment pressures (“Ptrap”) or temperatures (“Ttrap”) by quantifying diverse analytical errors, as well as to identify optimal measurement conditions and provide a baseline for interlaboratory comparisons. Most tests emphasized 442 nm (blue) and 532 nm (green) laser sources, although repeated analysis of a quartz inclusion in garnet additionally used a 632.8 nm (red) laser. Power density was varied from <1 to >100 mW and acquisition time from 3 to 270s. A correction is proposed to suppress interference on the ~206 cm–1 peak in quartz spectra by a broad nearby (~220 cm–1) peak in garnet spectra. Rapid peak drift up to 1 cm–1/h occurred after powering the laser source, followed by minimal drift (<0.2 cm–1/h) for several hours thereafter. However, abrupt shifts in peak positions as large as 2–3 cm–1 sometimes occurred within periods of minutes, commonly either positively or negatively correlated to changes in room temperature. An external Hg-emission line (fluorescent light) can be observed in spectra collected with the green laser and shows highly correlated but attenuated directional shifts compared to quartz and zircon peaks. Varying power density and acquisition time did not affect Raman peak positions of either quartz or zircon grains, possibly because power densities at the levels of inclusions were low. However, some zircon inclusions were damaged at higher power levels of the blue laser source, likely because of laser-induced heating. Using a combination of 1, 2, or 3 peak positions for the ~128, ~206, and ~464 cm–1 peaks in quartz to calculate Pinc and Ptrap showed that use of the blue laser source results in the most reproducible Ptrap values for all methods (0.59 to 0.68 GPa at an assumed temperature of 450 °C), with precisions for a single method as small as ±0.03 GPa (2σ). Using the green and red lasers, some methods of calculating Ptrap produce nearly identical estimates as the blue laser with similarly good precision (±0.02 GPa for green laser, ±0.03 GPa for red laser). However, using 1- and 2-peak methods to calculate Ptrap can yield values that range from 0.52 ± 0.06 to 0.93 ± 0.16 GPa for the green laser, and 0.53 ± 0.08 GPa to 1.00 ± 0.45 GPa for the red laser. Semiquantitative calculations for zircon, assuming a typical error of ±0.25 cm–1 in the position of the ~1008 cm–1 peak, imply reproducibility in temperature (at an assumed pressure) of approximately ±65 °C. For optimal applications to elastic thermobarometry, analysts should: (1) delay data collection approximately one hour after laser startup, or leave lasers on; (2) collect a Hg-emission line simultaneously with Raman spectra when using a green laser to correct for externally induced shifts in peak positions; (3) correct for garnet interference on the quartz 206 cm–1 peak; and either (4a) use a short wavelength (blue) laser for quartz and zircon crystals for P-T calculations, but use very low-laser power (<12 mW) to avoid overheating and damage or (4b) use either the intermediate wavelength (green; quartz and zircon) or long wavelength (red; zircon) laser for P-T calculations, but restrict calculations to specific methods. Implementation of our recommendations should optimize reproducibility for elastic geothermobarometry, especially QuiG barometry and ZiG thermometry.more » « less
An official website of the United States government

