skip to main content


Title: Relationships between biodiversity and ecosystem functioning proxies strengthen when approaching chemosynthetic deep-sea methane seeps
As biodiversity loss accelerates globally, understanding environmental influence over biodiversity–ecosystem functioning (BEF) relationships becomes crucial for ecosystem management. Theory suggests that resource supply affects the shape of BEF relationships, but this awaits detailed investigation in marine ecosystems. Here, we use deep-sea chemosynthetic methane seeps and surrounding sediments as natural laboratories in which to contrast relationships between BEF proxies along with a gradient of trophic resource availability (higher resource methane seep, to lower resource photosynthetically fuelled deep-sea habitats). We determined sediment fauna taxonomic and functional trait biodiversity, and quantified bioturbation potential (BPc), calcification degree, standing stock and density as ecosystem functioning proxies. Relationships were strongly unimodal in chemosynthetic seep habitats, but were undetectable in transitional ‘chemotone’ habitats and photosynthetically dependent deep-sea habitats. In seep habitats, ecosystem functioning proxies peaked below maximum biodiversity, perhaps suggesting that a small number of specialized species are important in shaping this relationship. This suggests that absolute biodiversity is not a good metric of ecosystem ‘value’ at methane seeps, and that these deep-sea environments may require special management to maintain ecosystem functioning under human disturbance. We promote further investigation of BEF relationships in non-traditional resource environments and emphasize that deep-sea conservation should consider ‘functioning hotspots' alongside biodiversity hotspots.  more » « less
Award ID(s):
1634172
NSF-PAR ID:
10309828
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
288
Issue:
1957
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ecotones have been described as “biodiversity hotspots” from myriad environments, yet have not been studied extensively in the deep ocean. While physiologically challenging, deep‐water methane seeps host highly productive communities fueled predominantly by chemosynthetic pathways. We hypothesized that the biological and geochemical influence of methane seeps extends into background habitats, resulting in the formation of a “chemotone” where chemosynthesis‐based and photosynthesis‐based communities overlap. To investigate this, we analyzed the macrofaunal assemblages and geochemical properties of sediments collected from “active,” “transition” (potential chemotone), and “background” habitats surrounding five Costa Rican methane seeps (depth range 377–1908 m). Sediment geochemistry demonstrated a clear distinction between active and transition habitats, but not between transition and background habitats. In contrast, biological variables confirmed the presence of a chemotone, characterized by intermediate biomass, a distinct species composition (including habitat endemics and species from both active and background habitats), and enhanced variability in species composition among samples. However, chemotone assemblages were not distinct from active and/or background assemblages in terms of faunal density, biological trait composition, or diversity. Biomass and faunal stable isotope data suggest that chemotones are driven by a gradient in food delivery, receiving supplements from chemosynthetic production in addition to available photosynthetic‐based resources. Sediment geochemistry suggests that chemosynthetic food supplements are delivered across the chemotone at least in part through the water column, as opposed to reflecting exclusivelyin situchemosynthetic production in sediments. Management efforts should be cognisant of the ecological attributes and spatial extent of the chemotone that surrounds deep‐sea chemosynthetic environments.

     
    more » « less
  2. Methane seeps are highly abundant marine habitats that contribute sources of chemosynthetic primary production to marine ecosystems. Seeps also factor into the global budget of methane, a potent greenhouse gas. Because of these factors, methane seeps influence not only local ocean ecology, but also biogeochemical cycles on a greater scale. Methane seeps host specialized microbial communities that vary significantly based on geography, seep gross morphology, biogeochemistry, and a diversity of other ecological factors including cross-domain species interactions. In this study, we collected sediment cores from six seep and non-seep locations from Grays and Quinault Canyons (46–47°N) off Washington State, USA, as well as one non-seep site off the coast of Oregon, USA (45°N) to quantify the scale of seep influence on biodiversity within marine habitats. These samples were profiled using 16S rRNA gene sequencing. Predicted gene functions were generated using the program PICRUSt2, and the community composition and predicted functions were compared among samples. The microbial communities at seeps varied by seep morphology and habitat, whereas the microbial communities at non-seep sites varied by water depth. Microbial community composition and predicted gene function clearly transitioned from on-seep to off-seep in samples collected from transects moving away from seeps, with a clear ecotone and high diversity where methane-fueled habitats transition into the non-seep deep sea. Our work demonstrates the microbial and metabolic sphere of influence that extends outwards from methane seep habitats. 
    more » « less
  3. Abstract

    Methane seeps are highly productive deep‐sea ecosystems reliant on chemosynthetic primary production. They are increasingly affected by direct human activities that threaten key ecosystem services. Methane seepage often generates precipitation of authigenic carbonate rocks, which host diverse microbes, and a dynamic invertebrate community. By providing hard substrate, even after seepage ceases, these rocks may promote a long‐lasting ecological interaction between seep and background communities. We analyzed community composition, density, and trophic structure of invertebrates on authigenic carbonates at Mound 12, a seep on the Pacific margin of Costa Rica, using one mensurative and two manipulative experiments. We asked whether carbonate macrofaunal communities are able to survive, adapt, and recover from changes in environmental factors (i.e., seepage activity, chemosynthetic production, and food availability), and we hypothesized a key role for seepage activity in defining these communities and responses. Communities onin situcarbonates under different seepage activities showed declining density with increasing distance from the seep and a shift in composition from gastropod dominance in areas of active seepage to more annelids and peracarid crustaceans that are less dependent on chemosynthetic production under lesser seepage. Response to changing environmental context was evident from altered community composition following (1) a natural decline in seepage over successive years, (2) transplanting of carbonates to different seepage conditions for 17 months, and (3) defaunated carbonate deployments under different seepage regimes over 7.4 yr. Seep faunas on transplants to lesser seepage emerge and recover faster than transition fauna (characterized by native seep and background faunas, respectively) and are able to persist by adapting their diets or by retaining their symbiotic bacteria. The macrofaunal community colonizing defaunated carbonates deployed for 7.4 yr developed communities with a similar successional stage asin siturocks, although trophic structure was not fully recovered. Thus, macrofaunal successional dynamics are affected by habitat complexity and the availability of microbial chemosynthetic productivity. This multi‐experiment study highlights the interaction between biotic and abiotic factors at methane seeps at different time scales along a spatial gradient connecting seep and surrounding deep‐sea communities and offers insight on the resilience of deep‐sea macrofaunal communities.

     
    more » « less
  4. Methane seeps provide biogeochemical and microbial heterogeneity in deep-sea habitats. In the Northeast (NE) Pacific Ocean recent studies have found an abundance of seeps at varying spatial separations and within distinct biogeochemical environments ranging in oxygen, depth, and temperature. Here, we examine eight newly discovered seeps and two known seeps covering 800 km and varying across 2000 m water depth to identify: (1) novel megafaunal communities in this geographical region; (2) variations in the microbiome of seep habitats across the margin; (3) spatial and biogeochemical drivers of microbial diversity at seeps. In addition to authigenic carbonates, clam beds, microbial mats, and exposed hydrates - we also observed Siboglinidae tube worm bushes and an anomalous deep-sea barnacle adding to the overall habitats known from the NE Pacific. The microbial communities showed high variability in their spatial distribution and community structure. The seep communities formed distinct groups that included multiple groups of anaerobic methane oxidizing Archaea (ANME; 1, 2ab, 2c, and 3), often co-occurring within one site – however, there were also other sites with clearly dominant members (e.g. ANME-1s at Nehalem Bank). Sulfide oxidizers were dominated by the non-mat forming Campylobacterales and even though vertical gradients in redox potential typify seep sediments, in two cases there was not a significant change in community structure across the top five cm of sediment. We posit that these patterns were driven by ‘bubble-turbation,’ and bioirrigation by megafauna. A surprising latitudinal trend was observed in species diversity and richness with increasing richness significantly correlated to increasing latitude. Overall, our results demonstrate that heterogeneity is ubiquitous in the seep biome, spanning all faunal classes, and that the understanding of seeps and the drivers of the community structure can be improved by studying seeps at a range of spatial scales. 
    more » « less
  5. Abstract Aim

    Understanding the global distribution of biodiversity and the factors that influence it are among the central goals of biogeography. How abiotic and biotic factors limit species' ranges has been investigated across a variety of environments and taxonomic groups. However, such investigations across oceanic depths remain underrepresented, particularly for chemosynthetic environments such as hydrocarbon seeps. The depth differentiation (DD) hypothesis suggests that steep environmental gradients in the upper depths of the ocean may limit species' ranges over relatively short vertical distances. The present study aims to investigate the evidence for the DD hypothesis at hydrocarbon seep sites along the Pacific Costa Rica Margin (CRM) by investigating the biogeographic distributions of gastropods sampled there and the factors that influence them.

    Location

    Costa Rica.

    Taxon

    Mollusca, Gastropoda, Provannidae, Genus:Provanna(Dall, 1918).

    Methods

    1813Provannasnails were collected across 1300 metres (m) of depth from Costa Rican hydrocarbon seeps. To test the DD hypothesis, species partitioning across the depth range was investigated. In addition to gradients in oceanographic conditions, such as temperature, oxygen, and salinity, other factors potentially responsible for filtering species were also considered as alternative hypotheses, including the availability of biogenic substrate, the availability of and reliance on chemosynthetic fluids, and specific preferences for certain environmental conditions.

    Results and Main Conclusions

    Three species ofProvannawere identified from the CRM and exhibited partitioning across depth. For the two dominant species (P. laevisandP. goniata), the data suggest that depth‐associated oceanographic conditions are more likely than any other factor investigated to explain their observed partitioning across depth, supporting the DD hypothesis. This study also presents novel evidence that such partitioning may be unilaterally determined, wherein species with narrower depth ranges may limit the local depth ranges of others. This study represents an extension of biogeographic range limit literature into chemosynthetic habitats and across oceanic depths.

     
    more » « less