skip to main content

Title: Relationships between biodiversity and ecosystem functioning proxies strengthen when approaching chemosynthetic deep-sea methane seeps
As biodiversity loss accelerates globally, understanding environmental influence over biodiversity–ecosystem functioning (BEF) relationships becomes crucial for ecosystem management. Theory suggests that resource supply affects the shape of BEF relationships, but this awaits detailed investigation in marine ecosystems. Here, we use deep-sea chemosynthetic methane seeps and surrounding sediments as natural laboratories in which to contrast relationships between BEF proxies along with a gradient of trophic resource availability (higher resource methane seep, to lower resource photosynthetically fuelled deep-sea habitats). We determined sediment fauna taxonomic and functional trait biodiversity, and quantified bioturbation potential (BPc), calcification degree, standing stock and density as ecosystem functioning proxies. Relationships were strongly unimodal in chemosynthetic seep habitats, but were undetectable in transitional ‘chemotone’ habitats and photosynthetically dependent deep-sea habitats. In seep habitats, ecosystem functioning proxies peaked below maximum biodiversity, perhaps suggesting that a small number of specialized species are important in shaping this relationship. This suggests that absolute biodiversity is not a good metric of ecosystem ‘value’ at methane seeps, and that these deep-sea environments may require special management to maintain ecosystem functioning under human disturbance. We promote further investigation of BEF relationships in non-traditional resource environments and emphasize that deep-sea conservation should consider ‘functioning hotspots' alongside biodiversity more » hotspots. « less
; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Methane seeps provide biogeochemical and microbial heterogeneity in deep-sea habitats. In the Northeast (NE) Pacific Ocean recent studies have found an abundance of seeps at varying spatial separations and within distinct biogeochemical environments ranging in oxygen, depth, and temperature. Here, we examine eight newly discovered seeps and two known seeps covering 800 km and varying across 2000 m water depth to identify: (1) novel megafaunal communities in this geographical region; (2) variations in the microbiome of seep habitats across the margin; (3) spatial and biogeochemical drivers of microbial diversity at seeps. In addition to authigenic carbonates, clam beds, microbial mats, and exposed hydrates - we also observed Siboglinidae tube worm bushes and an anomalous deep-sea barnacle adding to the overall habitats known from the NE Pacific. The microbial communities showed high variability in their spatial distribution and community structure. The seep communities formed distinct groups that included multiple groups of anaerobic methane oxidizing Archaea (ANME; 1, 2ab, 2c, and 3), often co-occurring within one site – however, there were also other sites with clearly dominant members (e.g. ANME-1s at Nehalem Bank). Sulfide oxidizers were dominated by the non-mat forming Campylobacterales and even though vertical gradients in redox potential typify seepmore »sediments, in two cases there was not a significant change in community structure across the top five cm of sediment. We posit that these patterns were driven by ‘bubble-turbation,’ and bioirrigation by megafauna. A surprising latitudinal trend was observed in species diversity and richness with increasing richness significantly correlated to increasing latitude. Overall, our results demonstrate that heterogeneity is ubiquitous in the seep biome, spanning all faunal classes, and that the understanding of seeps and the drivers of the community structure can be improved by studying seeps at a range of spatial scales.« less
  2. Deep-sea cold seeps are dynamic sources of methane release and unique habitats supporting ocean biodiversity and productivity. Here, we describe newly discovered animal-bacterial symbioses fueled by methane, between two species of annelid (a serpulid Laminatubus and sabellid Bispira ) and distinct aerobic methane-oxidizing bacteria belonging to the Methylococcales, localized to the host respiratory crown. Worm tissue δ 13 C of −44 to −58‰ are consistent with methane-fueled nutrition for both species, and shipboard stable isotope labeling experiments revealed active assimilation of 13 C-labeled methane into animal biomass, which occurs via the engulfment of methanotrophic bacteria across the crown epidermal surface. These worms represent a new addition to the few animals known to intimately associate with methane-oxidizing bacteria and may further explain their enigmatic mass occurrence at 150–million year–old fossil seeps. High-resolution seafloor surveys document significant coverage by these symbioses, beyond typical obligate seep fauna. These findings uncover novel consumers of methane in the deep sea and, by expanding the known spatial extent of methane seeps, may have important implications for deep-sea conservation.
  3. Dorvilleidae is a diverse group of annelids found in many marine environments and also commonly associated with chemosynthetic habitats. One dorvilleid genus, Parougia, currently has 11 described species, of which two are found at vents or seeps: Parougia wolfi and Parougia oregonensis. Eight new Parougia species are recognised and described in this study from collections in the Pacific Ocean, all from whale-falls, hydrothermal vents, or methane seeps at ~600-m depth or greater. The specimens were studied using morphology and phylogenetic analyses of DNA sequences from mitochondrial (cytochrome c oxidase subunit I, 16S rRNA, and cytochrome b) and nuclear (18S rRNA and histone 3) genes. Six sympatric Parougia spp. were found at Hydrate Ridge, Oregon, while three of the Parougia species occurred at different types of chemosynthetic habitats. Two new species were found over wide geographical and bathymetric ranges. Another dorvilleid genus, Ophryotrocha, has previously been highlighted as diversifying in the deep-sea environment. Our results document the hitherto unknown diversity of another dorvilleid genus, Parougia, at various chemosynthetic environments.
  4. Biodiversity-ecosystem functioning (BEF) research grew rapidly following concerns that biodiversity loss would negatively affect ecosystem functions and the ecosystem services they underpin. However, despite evidence that biodiversity strongly affects ecosystem functioning, the influence of BEF research upon policy and the management of ‘real-world’ ecosystems, i.e., semi-natural habitats and agroecosystems, has been limited. Here, we address this issue by classifying BEF research into three clusters based on the degree of human control over species composition and the spatial scale, in terms of grain, of the study, and discussing how the research of each cluster is best suited to inform particular fields of ecosystem management. Research in the first cluster, small-grain highly controlled studies, is best able to provide general insights into mechanisms and to inform the management of species-poor and highly managed systems such as croplands, plantations, and the restoration of heavily degraded ecosystems. Research from the second cluster, small-grain observational studies, and species removal and addition studies, may allow for direct predictions of the impacts of species loss in specific semi-natural ecosystems. Research in the third cluster, large-grain uncontrolled studies, may best inform landscape-scale management and national-scale policy. We discuss barriers to transfer within each cluster and suggest how newmore »research and knowledge exchange mechanisms may overcome these challenges. To meet the potential for BEF research to address global challenges, we recommend transdisciplinary research that goes beyond these current clusters and considers the social-ecological context of the ecosystems in which BEF knowledge is generated. This requires recognizing the social and economic value of biodiversity for ecosystem services at scales, and in units, that matter to land managers and policy makers.« less
  5. Background

    Vestimentiferan tubeworms are some of the most recognizable fauna found at deep-sea cold seeps, isolated environments where hydrocarbon rich fluids fuel biological communities. Several studies have investigated tubeworm population structure; however, much is still unknown about larval dispersal patterns at Gulf of Mexico (GoM) seeps. As such, researchers have applied microsatellite markers as a measure for documenting the transport of vestimentiferan individuals. In the present study, we investigate the utility of microsatellites to be cross-amplified within the escarpiid clade of seep vestimentiferans, by determining if loci originally developed forEscarpiaspp. could be amplified in the GoM seep tubeworm,Seepiophila jonesi. Additionally, we determine if cross-amplified loci can reliably uncover the same signatures of high gene flow seen in a previous investigation ofS. jonesi.


    Seventy-sevenS. jonesiindividuals were collected from eight seep sites across the upper Louisiana slope (<1,000 m) in the GoM. Forty-eight microsatellite loci that were originally developed forEscarpia laminata(18 loci) andEscarpia southwardae(30 loci) were tested to determine if they were homologous and polymorphic inS. jonesi. Loci found to be both polymorphic and of high quality were used to test for significant population structuring inS. jonesi.


    Microsatellite pre-screening identified 13 (27%) of theEscarpialoci were homologous and polymorphic inS. jonesi, revealing that microsatellitesmore »can be amplified within the escarpiid clade of vestimentiferans. Our findings uncovered low levels of heterozygosity and a lack of genetic differentiation amongstS. jonesifrom various sites and regions, in line with previous investigations that employed species-specific polymorphic loci onS. jonesiindividuals retrieved from both the same and different seep sites. The lack of genetic structure identified from these populations supports the presence of significant gene flow via larval dispersal in mixed oceanic currents.


    The ability to develop “universal” microsatellites reduces the costs associated with these analyses and allows researchers to track and investigate a wider array of taxa, which is particularly useful for organisms living at inaccessible locations such as the deep sea. Our study highlights that non-species specific microsatellites can be amplified across large evolutionary distances and still yield similar findings as species-specific loci. Further, these results show thatS. jonesicollected from various localities in the GoM represents a single panmictic population, suggesting that dispersal of lecithotrophic larvae by deep sea currents is sufficient to homogenize populations. These data are consistent with the high levels of gene flow seen inEscarpiaspp., which advocates that differences in microhabitats of seep localities lead to variation in biogeography of separate species.

    « less