- Award ID(s):
- 1654780
- PAR ID:
- 10309830
- Date Published:
- Journal Name:
- Zeitschrift für Naturforschung B
- Volume:
- 76
- Issue:
- 10-12
- ISSN:
- 0932-0776
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Combining experimental and theoretical studies, we investigate the role of R-site (R = Y, Sm, Bi) element on the phase formation and thermal stability of R 2 (Mn 1−x Fe x ) 4 O 10−δ ( x = 0, 0.5, 1) mullite-type oxides. Our results show a distinct R-site dependent phase behavior for mullite-type oxides as Fe is substituted for Mn: 100% mullite-type phase was formed in (Y, Sm, Bi) 2 Mn 4 O 10 ; 55% and 18% of (Y, Sm) 2 Mn 2 Fe 2 O 10−δ was found when R = Y and Sm, respectively, for equal Fe and Mn molar concentrations in the reactants, whereas Bi formed 54% O10- and 42% O9-mixed mullite-type phases. Furthermore, when the reactants contain 100% Fe, no mullite-type phase was formed for R = Y and Sm, but a sub-group transition to Bi 2 Fe 4 O 9 O9-phase was found for R = Bi. Thermogravimetric analysis and density functional theory (DFT) calculation results show a decreasing thermal stability in O10-type structure with increasing Fe incorporation; for example, the decomposition temperature is 1142 K for Bi 2 Mn 2 Fe 2 O 10−δ vs. 1217 K for Bi 2 Mn 4 O 10 . On the other hand, Bi 2 Fe 4 O 9 O9-type structure is found to be thermally stable up to 1227 K. These findings are explained by electronic structure calculations: (1) as Fe concentration increases, Jahn–Teller distortion results in mid band-gap empty states from unstable Fe 4+ occupied octahedra, which is responsible for the decrease in O10 structure stability; (2) the directional sp orbital hybridization unique to Bi effectively stabilizes the mullite-type structure as Fe replaces Mn.more » « less
-
Triangular Arrangement of Ferromagnetic Iron Chains in the High‐ T C Ferromagnet TiFe 1−x Os 2+x B 2
Abstract Transition‐metal borides (TMBs) containing B
n ‐fragment (n >3) have recently gained interest for their ability to enable exciting magnetic materials. Herein, we show that the B4‐containing TiFe0.64(1)Os2.36(1)B2is a new ferromagnetic TMB with a Curie temperature of 523(2) K and a Weiss constant of 554(3) K, originating from the chain ofM 3‐triangles (M =64 %Fe+36 %Os). The new phase was synthesized from the elements by arc‐melting, and its structure was elucidated by single‐crystal X‐ray diffraction. It belongs to the Ti1+x Os2−x RuB2‐type structure (space groupP 2 m , no. 189) and contains trigonal‐planar B4boron fragments [B−B distance of 1.87(4) Å] interacting withM 3‐triangles [M–M distances of 2.637(8) Å and 3.0199(2) Å]. The experimental results were supported by computational calculations based on the ideal TiFeOs2B2composition, which revealed strong ferromagnetic interactions within and between the Fe3‐triangles. This discovery represents the first magnetically ordered Os‐rich TMB, thus it will help expand our knowledge of the role of Os in low‐dimensional magnetism of intermetallics and enable the design of such materials in the future. -
null (Ed.)A ternary derivative of Li 3 Bi with the composition Li 3– x – y In x Bi ( x ≃ 0.14, y ≃ 0.29) was produced by a mixed In+Bi flux approach. The crystal structure adopts the space group Fd \overline{3} m (No. 227), with a = 13.337 (4) Å, and can be viewed as a 2 × 2 × 2 superstructure of the parent Li 3 Bi phase, resulting from a partial ordering of Li and In in the tetrahedral voids of the Bi fcc packing. In addition to the Li/In substitutional disorder, partial occupation of some Li sites is observed. The Li deficiency develops to reduce the total electron count in the system, counteracting thereby the electron doping introduced by the In substitution. First-principles calculations confirm the electronic rationale of the observed disorder.more » « less
-
Abstract The quinary members in the solid solution Hf2Fe1−
δ Ru5−x Irx +δ B2(x =1–4, VE=63–66) have been investigated experimentally and computationally. They were synthesized via arc‐melting and analyzed by EDX and X‐ray diffraction. Density functional theory (DFT) calculations predicted a preference for magnetic ordering in all members, but with a strong competition between ferro‐ and antiferromagnetism arising from interchain Fe−Fe interactions. The spin exchange and magnetic anisotropy energies predicted the lowest magnetic hardness forx =1 and 3 and the highest forx =2. Magnetization measurements confirm the DFT predictions and demonstrate that the antiferromagnetic ordering (T N=55–70 K) found at low magnetic fields changed to ferromagnetic (T C=150–750 K) at higher fields, suggesting metamagnetic behavior for all samples. As predicted, Hf2FeRu3Ir2B2has the highest intrinsic coercivity (Hc =74 kA/m) reported to date for Ti3Co5B2‐type phases. Furthermore, all coercivities outperform that of ferromagnetic Hf2FeIr5B2, indicating the importance of AFM interactions in enhancing magnetic anisotropy in these materials. Importantly, two members (x =1 and 4) maintain intrinsic coercivities in the semi‐hard range at room temperature. This study opens an avenue for controlling magnetic hardness by modulating antagonistic AFM and FM interactions in low‐dimensional rare‐earth‐free magnetic materials. -
Abstract Vanadium multiredox‐based NASICON‐Na
z V2−y My (PO4)3(3 ≤z ≤ 4; M = Al3+, Cr3+, and Mn2+) cathodes are particularly attractive for Na‐ion battery applications due to their high Na insertion voltage (>3.5 V vs Na+/Na0), reversible storage capacity (≈150 mA h g−1), and rate performance. However, their practical application is hindered by rapid capacity fade due to bulk structural rearrangements at high potentials involving complex redox and local structural changes. To decouple these factors, a series of Mg2+‐substituted Na3+y V2−y Mgy (PO4)3(0 ≤y ≤ 1) cathodes is studied for which the only redox‐active species is vanadium. While X‐ray diffraction (XRD) confirms the formation of solid solutions between they = 0 and 1 end members, X‐ray absorption spectroscopy and solid‐state nuclear magnetic resonance reveal a complex evolution of the local structure upon progressive Mg2+substitution for V3+. Concurrently, the intercalation voltage rises from 3.35 to 3.45 V, due to increasingly more ionic VO bonds, and the sodium (de)intercalation mechanism transitions from a two‐phase fory ≤ 0.5 to a solid solution process fory ≥ 0.5, as confirmed by in operando XRD, while Na‐ion diffusion kinetics follow a nonlinear trend across the compositional series.