- Award ID(s):
- 1700030
- Publication Date:
- NSF-PAR ID:
- 10062589
- Journal Name:
- RSC Advances
- Volume:
- 8
- Issue:
- 1
- Page Range or eLocation-ID:
- 28 to 37
- ISSN:
- 2046-2069
- Sponsoring Org:
- National Science Foundation
More Like this
-
The structure of a series of lanthanide iron cobalt perovskite oxides, R (Fe 0.5 Co 0.5 )O 3 ( R = Pr, Nd, Sm, Eu, and Gd), have been investigated. The space group of these compounds was confirmed to be orthorhombic Pnma (No. 62), Z = 4. From Pr to Gd, the lattice parameter a varies from 5.466 35(13) Å to 5.507 10(13) Å, b from 7.7018(2) to 7.561 75(13) Å, c from 5.443 38(10) to 5.292 00(8) Å, and unit-cell volume V from 229.170(9) Å 3 to 220.376(9) Å 3 , respectively. While the trend of V follows the trend of the lanthanide contraction, the lattice parameter “ a ” increases as the ionic radius r ( R 3+ ) decreases. X-ray diffraction (XRD) and transmission electron microscopy confirm that Fe and Co are disordered over the octahedral sites. The structure distortion of these compounds is evidenced in the tilt angles θ, ϕ , and ω , which represent rotations of an octahedron about the pseudocubic perovskite [110] p , [001] p , and [111] p axes. All three tilt angles increase across the lanthanide series (for R = Pr to R = Gd: θ increases from 12.3° tomore »
-
Abstract Chemical looping air separation (CLAS) is a promising technology for oxygen generation with high efficiency. The key challenge for CLAS is to design robust oxygen sorbents with suitable redox properties and fast redox kinetics. In this work, perovskite-structured Sr1-xCaxFe1-yCoyO3oxygen sorbents were investigated and demonstrated for oxygen production with tunable redox properties, high redox rate, and excellent thermal/steam stability. Cobalt doping at B site was found to be highly effective, 33% improvement in oxygen productivity was observed at 500 °C. Moreover, it stabilizes the perovskite structure and prevents phase segregation under pressure swing conditions in the presence of steam. Scalable synthesis of Sr0.8Ca0.2Fe0.4Co0.6O3oxygen sorbents was carried out through solid state reaction, co-precipitation, and sol-gel methods. Both co-precipitation and sol-gel methods are capable of producing Sr0.8Ca0.2Fe0.4Co0.6O3sorbents with satisfactory phase purity, high oxygen capacity, and fast redox kinetics. Large scale evaluation of Sr0.8Ca0.2Fe0.4Co0.6O3, using an automated CLAS testbed with over 300 g sorbent loading, further demonstrated the effectiveness of the oxygen sorbent to produce 95% pure O2with a satisfactory productivity of 0.04 gO2gsorbent−1h−1at 600 °C.
-
Lead-free perovskites and their analogues have been extensively studied as a class of next-generation luminescent and optoelectronic materials. Herein, we report the synthesis of new colloidal Cs 4 M( ii )Bi 2 Cl 12 (M( ii ) = Cd, Mn) nanocrystals (NCs) with unique luminescence properties. The obtained Cs 4 M( ii )Bi 2 Cl 12 NCs show a layered double perovskite (LDP) crystal structure with good particle stability. Density functional theory calculations show that both samples exhibit a wide, direct bandgap feature. Remarkably, the strong Mn–Mn coupling effect of the Cs 4 M( ii )Bi 2 Cl 12 NCs results in an ultra-short Mn photoluminescence (PL) decay lifetime of around 10 μs, around two orders of magnitude faster than commonly observed Mn 2+ dopant emission in NCs. Diluting the Mn 2+ ion concentration through forming Cs 4 (Cd 1−x Mn x )Bi 2 Cl 12 (0 < x < 1) alloyed LDP NCs leads to prolonged PL lifetimes and enhanced PL quantum yields. Our study provides the first synthetic example of Bi-based LDP colloidal NCs with potential for serving as a new category of stable lead-free perovskite-type materials for various applications.
-
Design of hetero tri metallic molecules, especially those containing at least two different metals with close atomic numbers, radii, and the same coordination number/environment is a challenging task. This quest is greatly facilitated by having a heterobimetallic parent molecule that features multiple metal sites with only some of those displaying substitutional flexibility. Recently, a unique heterobimetallic complex LiMn 2 (thd) 5 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) has been introduced as a single-source precursor for the preparation of a popular spinel cathode material, LiMn 2 O 4 . Theoretical calculations convincingly predict that in the above trinuclear molecule only one of the Mn sites is sufficiently flexible to be substituted with another 3d transition metal. Following those predictions, two hetero tri metallic complexes, LiMn 2−x Co x (thd) 5 ( x = 1 ( 1a ) and 0.5 ( 1b )), that represent full and partial substitution, respectively, of Co for Mn in the parent molecule, have been synthesized. X-ray structural elucidation clearly showed that only one transition metal position in the trinuclear molecule contains Co, while the other site remains fully occupied by Mn. A number of techniques have been employed for deciphering the structure and composition of hetero tri metallic compounds.more »
-
To address critical energy issues in civic structures, we have developed a novel concept of optical thermal insulation (OTI) without relying on a conventional thermal intervention medium, such as air or argon, as often used in conventional window systems. We have synthesized the photothermal (PT) materials, such as the Fe 3 O 4 and Fe 3 O 4 @Cu 2− x S nanoparticles, that exhibit strong UV and near-infrared (NIR) absorptions but with good visible transparency. Upon coating the inner surface of the window glass with a PT film, under solar irradiation, the inner surface temperature rises due to the PT effect. Subsequently, the temperature difference, Δ T , is reduced between the single pane and room interior. This leads to lower the thermal loss through a window, reflected by the U -factor, resulting in considerable energy saving without double- or triple-glazing. Comparing with the Fe 3 O 4 coatings, Fe 3 O 4 @Cu 2− x S is spectrally characterized with a much stronger NIR absorbance, contributing to an increased PT efficiency under simulated solar irradiation (0.1 W/cm 2 ). PT experiments are carried out via both white light and monochromic NIR irradiations (785 nm). The parameters associated withmore »